172
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

First complex refractive indices retrieval from FIR to UV: Application to kaolinite particles

, , , , &
Pages 498-511 | Received 05 Sep 2023, Accepted 30 Jan 2024, Published online: 04 Mar 2024

References

  • Alalam, P., L. Deschutter, A. Al Choueiry, D. Petitprez, and H. Herbin. 2022. Aerosol mineralogical study using laboratory and IASI measurements: Application to East Asian deserts. Remote Sens. 14 (14): 3422. doi: 10.5194/acp-19-15503-2019.
  • Arakawa, E. T., P. S. Tuminello, B. N. Khare, M. E. Millham, S. Authier, and J. Pierce. 1997. Measurement of optical properties of small particles. Oak Ridge, TN: Oak Ridge National Lab.
  • Atkinson, J. D., B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O'Sullivan, and T. L. Malkin. 2013. The importance of feldspar for ICE nucleation by mineral dust in mixed-phase clouds. Nature 498 (7454):355–8. doi: 10.1038/nature12278.
  • Balan, E., A. M. Saitta, F. Mauri, and G. Calas. 2001. First-principles modeling of the infrared spectrum of kaolinite. Am. Mineral. 86 (11–12):1321–30. doi: 10.2138/am-2001-11-1201.
  • Chen, C., O. Dubovik, G. L. Schuster, M. Chin, D. K. Henze, T. Lapyonok, Z. Li, Y. Derimian, and Y. Zhang. 2022. Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing. Nat. Commun. 13 (1):7459. doi: 10.1038/s41467-022-35147-y.
  • Clarisse, L., D. Hurtmans, A. J. Prata, F. Karagulian, C. Clerbaux, M. D. Mazière, and P.-F. Coheur. 2010. Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra. Appl. Opt. 49 (19):3713–22. doi: 10.1364/AO.49.003713.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol. Sci. Technol. 38 (12):1185–205. doi: 10.1080/02786826.2004.10399461.
  • Deguine, A., L. Clarisse, H. Herbin, and D. Petitprez. 2023a. Measuring volcanic ash with high-spectral resolution infrared sounders: Role of refractive indices. IEEE Geosci. Remote Sens. Lett. 20:1–5. doi: 10.1109/LGRS.2023.3261202.
  • Deguine, A., D. Petitprez, L. Clarisse, L. Deschutter, K. Fontijn, and H. Herbin. 2023b. Retrieval of refractive indices of ten volcanic ash samples in the infrared, visible and ultraviolet spectral region. J. Aerosol. Sci. 167 (1):106100. doi: 10.1016/j.jaerosci.2022.106100.
  • Deguine, A., D. Petitprez, L. Clarisse, S. Guđmundsson, V. Outes, G. Villarosa, and H. Herbin. 2020. Complex refractive index of volcanic ash aerosol in the infrared, visible, and ultraviolet. Appl. Opt. 59 (4):884. doi: 10.1364/AO.59.000884.
  • Di Biagio, C., P. Formenti, Y. Balkanski, L. Caponi, M. Cazaunau, E. Pangui, E. Journet, S. Nowak, M. O. Andreae, K. Kandler, et al. 2019. Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron vontent. Atmos. Chem. Phys. 19 (24):15503–31. doi: 10.5194/acp-19-15503-2019.
  • Egan, W. 2012. Optical properties of inhomogeneous materials: Applications to geology, astronomy chemistry, and engineering. Amsterdam, Netherlands: Elsevier.
  • Engelbrecht, J. P., H. Moosmüller, S. Pincock, R. K. M. Jayanty, T. Lersch, and G. Casuccio. 2016. Technical note: Mineralogical, chemical, morphological, and optical inter relationships of mineral dust re-suspensions. Atmos. Chem. Phys. 16 (17):10809–30. doi: 10.5194/acp-16-10809-2016.
  • Glotch, T. D., G. R. Rossman, and O. Aharonson. 2007. Mid-infrared (5–100 Μm) reflectance spectra and optical constants of ten phyllosilicate minerals. ICARUS 192 (2):605–22. doi: 10.1016/j.icarus.2007.07.002.
  • Herbin, H., L. C. Labonnote, and P. Dubuisson. 2013. Multispectral information from TANSO-FTS instrument – part 1: Application to greenhouse gases (CO2 and CH4) in clear sky conditions. Atmos. Meas. Tech. 6 (11):3301–11. doi: 10.5194/amt-6-3301-2013.
  • Herbin, H., O. Pujol, P. Hubert, and D. Petitprez. 2017. New approach for the determination of aerosol refractive indices – part I: Theoretical bases and numerical methodology. J. Quant. Spectrosc. Radiat. Transf. 200 (1):311–9. doi: 10.1016/j.jqsrt.2017.03.005.
  • Herbin, H., L. Deschutter, A. Deguine, and D. Petitprez. 2023. Complex refractive index of crystalline quartz particles from UV to thermal infrared. Aerosol Sci. Technol. 57 (3):255–65. doi: 10.1080/02786826.2023.2165899.
  • Hoshino, M., K. Sanematsu, and Y. Watanabe. 2016. Chapter 279 - REE mineralogy and resources. In Handbook on the physics and vhemistry of rare earths, eds. B. Jean-Claude and P. K. Vitalij, Vol. 49, 129–291. Including Actinides. Amsterdam, Netherlands: Elsevier.
  • Hubert, P., H. Herbin, N. Visez, O. Pujol, and D. Petitprez. 2017. New approach for the determination of aerosol refractive indices – part II: Experimental set-up and application to amorphous silica particles. J. Quant. Spectrosc. Radiat. Transf. 200 (1):320–7. doi: 10.1016/j.jqsrt.2017.03.037.
  • Khlystov, A., C. Stanier, and S. N. Pandis. 2004. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol. Sci. Technol. 38 (1):229–38. doi: 10.1080/02786820390229543.
  • Kim, J. H., G. W. Mulholland, S. R. Kukuck, and D. Y. H. Pui. 2005. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110 (1):31–54. doi: 10.6028/jres.110.005.
  • Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S. E. Bauer, T. Berntsen, T. F. Berglen, O. Boucher, M. Chin, et al. 2006. An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 6 (7):1815–34. doi: 10.5194/acp-6-1815-2006.
  • Kok, J. F., D. A. Ridley, Q. Zhou, R. L. Miller, C. Zhao, C. L. Heald, D. S. Ward, S. Albani, and K. Haustein. 2017. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 10 (4):274–8. doi: 10.1038/ngeo2912.
  • Laskina, O., M. A. Young, P. D. Kleiber, and V. H. Grassian. 2012. Infrared extinction spectra of mineral dust aerosol: Single components and complex mixtures. Journal of Geophysical Research Atmospheres 117 (17):18210. doi: 10.1029/2012JD017756.
  • Longtin, D. R., E. P. Shettle, J. R. Hummel, and J. D. Pryce. 1988. A wind dependent desert aerosol model: Radiative properties. Washington, DC: Air Force Geophysics Laboratory, Air Force Systems Command, United States Air Force.
  • Madejová, J., W. P. Gates, and S. Petit. 2017. Chapter 5 - IR spectra of clay minerals. In Developments in clay science, eds. W.P. Gates, J.T. Kloprogge, J. Madejová, and F. Bergaya, Vol. 8, 107–49. Infrared and Raman Spectroscopies of Clay Minerals. Amsterdam, Netherlands: Elsevier.
  • McPheat, R. A., S. F. Bass, D. A. Newnham, J. Ballard, and J. J. Remedios. 2002. Comparison of aerosol and thin film spectra of supercooled ternary solution aerosol. J.Geophys. Res. Atmos. 107 (D19):AAC 5-1– 5-8. doi: 10.1029/2001JD000641.
  • Méndez Harper, J., D. Harvey, T. Huang, J. McGrath, III, D. Meer, and J. C. Burton. 2022. The lifetime of charged dust in the atmosphere. PNAS Nexus 1 (5):pgac220. doi: 10.1093/pnasnexus/pgac220.
  • Mogili, P. K., K. H. Yang, M. A. Young, P. D. Kleiber, and V. H. Grassian. 2007. Environmental aerosol chamber studies of extinction spectra of nineral dust aerosol components: Broadband IR-UV extinction spectra. J. Geophys. Res. 112 (D21):D21204. doi: 10.1029/2007JD008890.
  • Mogili, P. K., K. H. Yang, M. A. Young, P. D. Kleiber, and V. H. Grassian. 2008. Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies. Atmos. Environ. 42 (8):1752–61. doi: 10.1016/j.atmosenv.2007.11.026.
  • Nussenzveig, H. M., and W. J. Wiscombe. 1980. EfficiencyfFactors in mie scattering. Phys. Rev. Lett. 45 (18):1490–4. doi: 10.1103/PhysRevLett.45.1490.
  • Osborne, S. R., A. J. Baran, B. T. Johnson, J. M. Haywood, E. Hesse, and S. Newman. 2011. Short-wave and long-wave radiative properties of Saharan dust aerosol. Quart. J. Royal Meteoro. Soc. 137 (658):1149–67. doi: 10.1002/qj.771.
  • Querry, M. R. 1998. Optical constants of minerals and other materials from the millimeter to the ultraviolet. Picatinny Arsenal, NJ: Chemical Research, Development & Engineering Center, U.S. Army Armament Munitions Chemical Command.
  • Reed, B. E., D. M. Peters, R. McPheat, A. J. A. Smith, and R. G. Grainger. 2017. Mass extinction spectra and size distribution measurements of quartz and amorphous silica aerosol at 0.33–19 Μm compared to modelled extinction using mie, CDE, and T-matrix theories. J. Quant. Spectrosc. Radiat. Transf. 199 (1):52–65. doi: 10.1016/j.jqsrt.2017.05.011.
  • Rodgers, C. D. 2000. Inverse methods for atmospheric sounding: Theory and practice. Singapore: World Scientific.
  • Roush, T., J. Pollack, and J. Orenberg. 1991. Derivation of midinfrared (5–25 Μm) optical constants of some silicates and palagonite. ICARUS 94 (1):191–208.
  • doi: 10.1016/0019-1035(91)90150-r.
  • Satheesh, S. K., and K. K. Moorthy. 2005. Radiative effects of natural aerosols: A review. Atmos. Environ. 39 (11):2089–110. doi: 10.1016/j.atmosenv.2004.12.029.
  • Savitzky, A., and M. J. E. Golay. 2002. Smoothing and differentiation of data by simplified least squares procedures. Research-article. Washington, DC: ACS Publications.
  • Seinfeld, J. H., and S. N. Pandis. 2006. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken, NJ: John Wiley.
  • Tunega, D., and A. Zaoui. 2020. Mechanical and bonding behaviors vehind the vending mechanism of Kaolinite clay layers. J. Phys. Chem. C Nanomater. Interfaces. 124 (13):7432–40. doi: 10.1021/acs.jpcc.9b11274.
  • Varga, G. 2007. The structure of Kaolinite and metakaolinite. Epitoanyag - JSBCM. 59 (1):6–9. doi: 10.14382/epitoanyag-jsbcm.2007.2.
  • Yu, H., Y. Yang, H. Wang, Q. Tan, M. Chin, R. C. Levy, L. A. Remer, S. J. Smith, T. Yuan, and Y. Shi. 2020. Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmos. Chem. Phys. 20 (1):139–61. doi: 10.5194/acp-20-139-2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.