367
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Performance of the Naneos partector 2 multi-metric nanoparticle detector at reduced temperature and pressure conditions

, , &
Pages 584-593 | Received 17 Oct 2023, Accepted 15 Feb 2024, Published online: 03 Apr 2024

References

  • ACTRIS. 2023. The Aerosol, Clouds and Trace Gases Research Infrastructure, https://www.actris.eu/about, accessed on 06/07/2023
  • Agarwal, J. K., and G. J. Sem. 1980. Continuous flow, single particle counting condensation nucleus counter. J. Aerosol Sci. 11 (4):343–57. doi: 10.1016/0021-8502(80)90042-7.
  • Asbach, C., S. Clavaguera, and A. M. Todea. 2015. Measurement methods for nanoparticles in indoor and outdoor air. In Indoor and outdoor nanoparticles. The handbook of environmental chemistry, ed. M. Viana, vol 48. Cham: Springer.
  • Asbach, C., H. Kaminski, Y. Lamboy, U. Schneiderwind, M. Fierz, and A. M. Todea. 2016. Silicone sampling tubes can cause drastic artifacts in measurements with aerosol instrumentation based on unipolar diffusion charging. Aerosol Sci. Technol. 50 (12):1375–84. doi: 10.1080/02786826.2016.1241858.
  • Asbach, C., V. Neumann, C. Monz, D. Dahmann, M. van Tongeren, C. Alexander, L. MacCalman, and A. M. Todea. 2017. On the effect of wearing personal nanoparticlemonitors on the comparability of personalexposure measurements. Environ. Sci. Nano. 4 (1):233–43. doi: 10.1039/C6EN00362A.
  • Atkinson, R. W., I. C. Mills, H. A. Walton, and H. R. Anderson. 2015. Fine particle components and health—A systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J. Expo. Sci. Environ. Epidemiol. 25 (2):208–14. doi: 10.1038/jes.2014.63.
  • Barmpounis, K., A. Maisser, A. Schmidt-Ott, and G. Biskos. 2016. Lightweight differential mobility analyzers: Toward new and inexpensive manufacturing methods. Aerosol Sci. Technol. 50 (1):2–5. doi: 10.1080/02786826.2015.1130216.
  • Baron, P. A., and K. Willeke. 2001. Aerosol Measurement: Principles, Techniques and Applications. 2nd ed., Hoboken: Willey-InterScience, Inc.
  • Bezantakos, S., and G. Biskos. 2022. Temperature and pressure effects on the performance of the portable TSI 3007 condensation particle counter: Implications on ground and aerial observations. J. Aerosol Sci. 159:105877. doi: 10.1016/j.jaerosci.2021.105877.
  • Bezantakos, S., F. Schmidt-Ott, and G. Biskos. 2018. Performance evaluation of the cost-effective and lightweight Alphasense optical particle counter for use onboard unmanned aerial vehicles. Aerosol Sci. Technol. 52 (4):385–92. doi: 10.1080/02786826.2017.1412394.
  • Biskos, G., K. Reavell, and N. Collings. 2005. Unipolar diffusion charging of aerosol particles in the transition regime. Aerosol Sci. 36 (2):247–65. doi: 10.1016/j.jaerosci.2004.09.002.
  • Boisdron, K., and J. R. Brock. 1970. On the stochastic nature of the acquisition of electrical charge and radioactivity by aerosol particles. Atmos. Environ. 4 (1):35–50. doi: 10.1016/0004-6981(70)90052-1.
  • Brus, D., J. Gustafsson, V. Vakkari, O. Kemppinen, G. de Boer, and A. Hirsikko. 2021. Measurement report: Properties of aerosol and gases in the vertical profile during the LAPSE-RATE campaign. Atmos. Chem. Phys. 21 (1):517–33. doi: 10.5194/acp-21-517-2021.
  • Fierz, M., H. Burtscher, P. Steigmeier, and M. Kasper. 2008. Field measurement of particle size and number concentration with the diffusion size classifier (DiSC). SAE 2008-01-1179
  • Fierz, M., D. Meier, P. Steigmeier, and H. Burtscher. 2014. Aerosol measurement by induced currents. Aerosol Sci. Technol. 48 (4):350–7. doi: 10.1080/02786826.2013.875981.
  • Fierz, M., D. Meier, P. Steigmeier, and H. Burtscher. 2015. Miniature nanoparticle sensors for exposure measurement and TEM sampling. J. Phys: Conf. Ser. 617:012034. doi: 10.1088/1742-6596/617/1/012034.
  • Fierz, M., P. Steigmeier, C. Houle, and H. Burtscher. 2011. Design, calibration and field performance of a miniature diffusion size classifier. Aerosol Sci. Technol. 45 (1):1–10. doi: 10.1080/02786826.2010.516283.
  • Fuchs, N. A. 1963. On the stationary charge distributions on aerosol particles in a bipolar ionic atmosphere. Geofisica Pura e Applicata 56 (1):185–93. doi: 10.1007/BF01993343.
  • Geiss, O., I. Bianchi, and J. Barrero-Moreno. 2016. Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments. J. Aerosol Sci. 96:24–37. doi: 10.1016/j.jaerosci.2016.02.007.
  • Haugen, M. J., S. Gkantonas, I. El Helou, R. Pathania, E. Mastorakos, and A. M. Boies. 2022. Measurements and modelling of the three-dimensional near-field dispersion of particulate matter emitted from passenger ships in a port environment. Atmos. Environ. 290:119384. doi: 10.1016/j.atmosenv.2022.119384.
  • Hermann, M., and A. Wiedensohler. 2001. Counting efficiency of condensation particle counters at low-pressures with illustrative data from the upper troposphere. J. Aerosol Sci. 32 (8):975–91. doi: 10.1016/S0021-8502(01)00037-4.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd ed., Hoboken: John Willey & Sons, Inc.
  • IPCC. 2013. Climate change 2013: The Physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. In IPCC: Summary for policymakers. Geneva: IPCC.
  • Kezoudi, M., C. Keleshis, P. Antoniou, G. Biskos, M. Bronz, C. Constantinides, M. Desservettaz, R.-S. Gao, J. Girdwood, J. Harnetiaux, et al. 2021. The unmanned systems research laboratory (USRL): A new facility for UAV-based atmospheric observations. Atmosphere 12 (8):1042. doi: 10.3390/atmos12081042.
  • Khaki, S., M. Rio, and P. Marin. 2022. Characterization of emissions in fab labs: An additive manufacturing environment issue. Sustainability 14 (5):2900. And doi: 10.3390/su14052900.
  • Koehler, K. A., and T. M. Peters. 2015. New methods for personal exposure monitoring for airborne particles. Curr. Environ. Health Rep. 2 (4):399–411. doi: 10.1007/s40572-015-0070-z.
  • Kumar, P., L. Morawska, C. Martani, G. Biskos, M. Neophytou, S. Di Sabatino, M. Bell, L. Norford, and R. Britter. 2015. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 75:199–205. doi: 10.1016/j.envint.2014.11.019.
  • Kuuluvainen, H., M. Poikkimäki, A. Järvinen, J. Kuula, M. Irjala, M. Dal Maso, J. Keskinen, H. Timonen, J. V. Niemi, and T. Rönkkö. 2018. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environ. Pollut. 241:96–105. doi: 10.1016/j.envpol.2018.04.100.
  • Lambey, V., and A. D. Prasad. 2021. A review on air quality measurement using an unmanned aerial vehicle. Water. Air. Soil Pollut. 232 (3):109. doi: 10.1007/s11270-020-04973-5.
  • Lampert, A., B. Altstädter, K. Bärfuss, L. Bretschneider, J. Sandgaard, J. Michaelis, L. Lobitz, M. Asmussen, E. Damm, R. Käthner, et al. 2020. Unmanned aerial systems for investigating the polar atmospheric boundary layer—technical challenge sand examples of applications. Atmosphere 11 (4):416. doi: 10.3390/atmos11040416.
  • Lavicoli, I., L. Fontana, P. Pingue, A. M. Todea, and C. Asbach. 2018. Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. Sci. Total Environ. 627:689–702. doi: 10.1016/j.scitotenv.2018.01.260.
  • Lowther, S. D., K. C. Jones, X. Wang, J. D. Whyatt, O. Wild, and D. Booker. 2019. Particulate matter measurement indoors: A review of metrics, sensors, needs, and applications. Environ. Sci. Technol. 53 (20):11644–56. doi: 10.1021/acs.est.9b03425.
  • Morawska, L., A. Afshari, G. N. Bae, G. Buonanno, C. Y. H. Chao, O. Hänninen, W. Hofmann, C. Isaxon, E. R. Jayaratne, P. Pasanen, et al. 2013. Indoor aerosols: From personal exposure to risk assessment. Indoor Air. 23 (6):462–87. doi: 10.1111/ina.12044.
  • Morawska, L., G. A. Ayoko, G. N. Bae, G. Buonanno, C. Y. H. Chao, S. Clifford, S. C. Fu, O. Hänninen, C. He, C. Isaxon, et al. 2017. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 108:75–83. (), doi: 10.1016/j.envint.2017.07.025.
  • Naneos, G. 2024. Partector 2 aerosol dosimeter operation manual. Naneos Particle Solutions gmbh, 2022, version ZB, 1–28.
  • Pappalardo, G. 2018. ACTRIS aerosol, clouds and trace gases research infrastructure. EPJ Web Conf. 176:09004. doi: 10.1051/epjconf/201817609004.
  • Sá, J. P., M. C. M. Alvim-Ferraz, F. G. Martins, and S. I. V. Sousa. 2022. Application of the low-cost sensing technology for indoor air quality monitoring: A review. Environ. Tech. Innov. 28:102551. doi: 10.1016/j.eti.2022.102551.
  • Salo, L., T. Rönkkö, S. Saarikoski, K. Teinilä, J. Kuula, J. Alanen, A. Arffman, H. Timonen, and J. Keskinen. 2021. Concentrations and size distributions of particle lung-deposited surface area (LDSA) in an underground mine. Aerosol Air Qual. Res. 21 (8):200660. doi: 10.4209/aaqr.200660.
  • Schwartz, J., and L. M. Neas. 2000. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11 (1):6–10. doi: 10.1097/00001648-200001000-00004.
  • Seinfeld, J. H., C. Bretherton, K. S. Carslaw, H. Coe, P. J. DeMott, E. J. Dunlea, G. Feingold, S. Ghan, A. B. Guenther, R. Kahn, et al. 2016. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. U S A 113 (21):5781–90. doi: 10.1073/pnas.1514043113.
  • Tanzer, R., C. Malings, A. Hauryliuk, R. Subramanian, and A. A. Presto. 2019. Demonstration of a low-cost multi-pollutant network to quantify intra-urban spatial variations in air pollutant source impacts and to evaluate environmental justice. Int. J. Environ. Res. Public Health. 16 (14):2523. doi: 10.3390/ijerph16142523.
  • Todea, A. M., S. Beckmann, H. Kaminski, D. Bard, S. Bau, S. Clavaguera, D. Dahmann, H. Dozol, N. Dziurowitz, K. Elihn, et al. 2017. Inter-comparison of personal monitors for nanoparticles exposure atwork places and in the environment. Sci. Total Environ. 605–606:929–45. doi: 10.1016/j.scitotenv.2017.06.041.
  • Villa, T. F., F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska. 2016. An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors 16 (7):1072. doi: 10.3390/s16071072.
  • Wang, K., F. Chen, W. Au, Z. Zhao, and Z. –L. Xia. 2019. Evaluating the feasibility of a personal particle exposure monitor in outdoor and indoor microenvironments in Shanghai, China. Int. J. Environ. Health Res. 29 (2):209–20. doi: 10.1080/09603123.2018.1533531.
  • Wang, S. C., and R. C. Flagan. 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13 (2):230–40. doi: 10.1080/02786829008959441.
  • WHO. 2000. Air quality guidelines for Europe. 2nd ed. World Health Organisation Regional Publications, European Series, No.91, accessed on line 14/01/2021: https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf.