212
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A new airborne single particle mass spectrometer: PALMS-NG

ORCID Icon, , , , , , , , & show all
Pages 991-1007 | Received 27 Dec 2023, Accepted 28 Feb 2024, Published online: 03 Apr 2024

References

  • Baron, P. A., and K. Willeke. 2001. Aerosol measurement: principles, techniques, and applications. Hoboken: Wiley-Interscience.
  • Brands, M., M. Kamphus, T. Böttger, J. Schneider, F. Drewnick, A. Roth, J. Curtius, C. Voigt, A. Borbon, M. Beekmann, et al. 2011. Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009. Aerosol Sci. Technol. 45 (1):46–64. doi:10.1080/02786826.2010.517813.
  • Cziczo, D. J., K. D. Froyd, C. Hoose, E. J. Jensen, M. Diao, M. A. Zondlo, J. B. Smith, C. H. Twohy, and D. M. Murphy. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 340 (6138):1320–4. doi:10.1126/science.1234145.
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson. 2004. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res. 109 (D4) doi:10.1029/2003JD004032.
  • Cziczo, D. J., D. S. Thomson, T. L. Thompson, P. J. DeMott, and D. M. Murphy. 2006. Particle analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number density particles. Int. J. Mass Spectrom. 258 (1–3):21–9. doi:10.1016/j.ijms.2006.05.013.
  • Froyd, K. D., D. M. Murphy, C. A. Brock, P. Campuzano-Jost, J. E. Dibb, J. L. Jimenez, A. Kupc, A. M. Middlebrook, G. P. Schill, K. L. Thornhill, et al. 2019. A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech. 12 (11):6209–39. doi:10.5194/amt-12-6209-2019.
  • Froyd, K. D., D. M. Murphy, P. Lawson, D. Baumgardner, and R. L. Herman. 2010. Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys. 10 (1):209–18. doi:10.5194/acp-10-209-2010.
  • Froyd, K. D., D. M. Murphy, G. P. Schill, and C. A. Brock. 2021. ATom: Measurements from particle analysis by laser mass spectrometry (PALMS). ORNL DAAC, Oak Ridge, Tennessee, USA 10.3334/ORNLDAAC/1733.
  • Fuzzi, S., U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, et al. 2015. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 15 (14):8217–99. doi:10.5194/acp-15-8217-2015.
  • Gallavardin, S. J., K. D. Froyd, U. Lohmann, O. Moehler, D. M. Murphy, and D. J. Cziczo. 2008. Single particle laser mass spectrometry applied to differential ice nucleation experiments at the AIDA chamber. Aerosol Sci. Technol. 42 (9):773–91. doi:10.1080/02786820802339538.
  • Hidy, G. M. 2019. Atmospheric aerosols: Some highlights and highlighters, 1950 to 2018. Aerosol Sci. Eng. 3 (1):1–20. doi:10.1007/s41810-019-00039-0.
  • Hünig, A., O. Appel, A. Dragoneas, S. Molleker, H. C. Clemen, F. Helleis, T. Klimach, F. Köllner, T. Böttger, F. Drewnick, et al. 2022. Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques. Atmos. Meas. Tech. 15 (9):2889–921. doi:10.5194/amt-15-2889-2022.
  • Johnston, M. V. 2000. Sampling and analysis of individual particles by aerosol mass spectrometry. J. Mass Spectrom. 35 (5):585–95. doi:10.1002/(sici)1096-9888(200005)35:5<585::Aid-jms992>3.0.Co;2-k.
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer. 2017. Overview of ice nucleating particles. Meteorological Monographs 58:1.1–.33. doi:10.1175/AMSMONOGRAPHS-D-16-0006.1.
  • Laskin, J., A. Laskin, and S. A. Nizkorodov. 2018. Mass spectrometry analysis in atmospheric chemistry. Anal. Chem. 90 (1):166–89. doi:10.1021/acs.analchem.7b04249.
  • Li, L., L. Liu, L. Xu, M. Li, X. Li, W. Gao, Z. Huang, and P. Cheng. 2018. Improvement in the mass resolution of single particle mass spectrometry using delayed ion extraction. J. Am. Soc. Mass Spectrom. 29 (10):2105–9. doi:10.1007/s13361-018-2037-4.
  • Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, et al. 2021. IPCC, 2021: Summary for Policymakers. In Climate change 2021: The physical science basis. Contribution of working Group I to the sixth assessment report of the intergovernmental panel on climate change. 3–32. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. doi:10.1017/9781009157896.001.
  • McNeill, V. F. 2017. Atmospheric aerosols: Clouds, chemistry, and climate. Annu. Rev. Chem. Biomol. Eng. 8 (1):427–44. doi:10.1146/annurev-chembioeng-060816-101538.
  • Murphy, D. M. 2007. The design of single particle laser mass spectrometers. Mass Spectrom. Rev. 26 (2):150–65. doi:10.1002/mas.20113.
  • Murphy, D. M. 2017. The sTOF, a favorable geometry for a time-of-flight analyzer. J. Am. Soc. Mass Spectrom. 28 (2):242–6. doi:10.1007/s13361-016-1518-6.
  • Murphy, D. M., D. J. Cziczo, P. K. Hudson, M. E. Schein, and D. S. Thomson. 2004. Particle density inferred from simultaneous optical and aerodynamic diameters sorted by composition. J. Aerosol Sci. 35 (1):135–9. doi:10.1016/S0021-8502(03)00386-0.
  • Murphy, D. M., and D. S. Thomson. 1997a. Chemical composition of single aerosol particles at Idaho Hill: Positive ion measurements. J. Geophys. Res. 102 (D5):6341–52. doi:10.1029/96JD00858.
  • Murphy, D. M., and D. S. Thomson. 1997b. Chemical composition of single aerosol particles at Idaho Hill: Negative ion measurements. J. Geophys. Res. 102 (D5):6353–68. doi:10.1029/96JD00859.
  • Murphy, D. M., D. S. Thomson, and M. J. Mahoney. 1998. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282 (5394):1664–9. doi:10.1126/science.282.5394.1664.
  • Noble, C. A., and K. A. Prather. 2000. Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom. Rev. 19 (4):248–74. doi:10.1002/1098-2787(200007)19:4<248::Aid-mas3>3.0.Co;2-i.
  • Noziere, B. 2016. Don’t forget the surface. Science 351 (6280):1396–7. doi:10.1126/science.aaf3253.
  • Pöschl, U. 2005. Atmospheric Aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 44 (46):7520–40. doi:10.1002/anie.200501122.
  • Pratt, K. A., J. E. Mayer, J. C. Holecek, R. C. Moffet, R. O. Sanchez, T. P. Rebotier, H. Furutani, M. Gonin, K. Fuhrer, Y. Su, et al. 2009. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem. 81 (5):1792–800. doi:10.1021/ac801942r.
  • Pratt, K. A., and K. A. Prather. 2012a. Mass spectrometry of atmospheric aerosols–recent developments and applications. Part i: Off-line mass spectrometry techniques. Mass Spectrom. Rev. 31 (1):1–16. doi:10.1002/mas.20322.
  • Pratt, K. A., and K. A. Prather. 2012b. Mass spectrometry of atmospheric aerosols–recent developments and applications. Part ii: On-line mass spectrometry techniques. Mass Spectrom. Rev. 31 (1):17–48. doi:10.1002/mas.20330.
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae. 2008. Flood or drought: How do aerosols affect precipitation? Science 321 (5894):1309–13. doi:10.1126/science.1160606.
  • Schreiner, J., U. Schild, C. Voigt, and K. Mauersberger. 1999. Focusing of aerosols into a particle beam at pressures from 10 to 150 Torr. Aerosol Sci. Technol. 31 (5):373–82. doi:10.1080/027868299304093.
  • Su, Y., M. F. Sipin, H. Furutani, and K. A. Prather. 2004. Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Anal. Chem. 76 (3):712–9. doi:10.1021/ac034797z.
  • Thompson, C. R., S. C. Wofsy, M. J. Prather, P. A. Newman, T. F. Hanisco, T. B. Ryerson, D. W. Fahey, E. C. Apel, C. A. Brock, W. H. Brune, et al. 2022. The NASA atmospheric tomography (ATom) mission: Imaging the chemistry of the global atmosphere. Bulletin of the American Meteorological Society 103 (3):E761–E790. doi:10.1175/BAMS-D-20-0315.1.
  • Thomson, D. S., M. E. Schein, and D. M. Murphy. 2000. Particle analysis by laser mass spectrometry WB-57F instrument overview. Aerosol Sci. Technol. 33 (1-2):153–69. doi:10.1080/027868200410903.
  • Wennberg, P. O., R. C. Cohen, N. L. Hazen, L. B. Lapson, N. T. Allen, T. F. Hanisco, J. F. Oliver, N. W. Lanham, J. N. Demusz, and J. G. Anderson. 1994. Aircraft‐borne, laser‐induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals. Review of Scientific Instruments 65 (6):1858–76. doi:10.1063/1.1144835.
  • Zawadowicz, M. A., K. D. Froyd, D. M. Murphy, and D. J. Cziczo. 2017. Improved identification of primary biological aerosol particles using single-particle mass spectrometry. Atmos. Chem. Phys. 17 (11):7193–212. doi:10.5194/acp-17-7193-2017.
  • Zelenyuk, A., D. Imre, J. Wilson, Z. Zhang, J. Wang, and K. Mueller. 2015. Airborne single particle mass spectrometers (SPLAT II & MINISPLAT) and new software for data visualization and analysis in a geo-spatial context. J. Am. Soc. Mass Spectrom. 26 (2):257–70. doi:10.1007/s13361-014-1043-4.
  • Zelenyuk, A., J. Yang, E. Choi, and D. Imre. 2009. SPLAT II: An aircraft compatible, ultra-sensitive, high precision instrument for in-situ characterization of the size and composition of fine and ultrafine particles. Aerosol Sci. Technol. 43 (5):411–24. doi:10.1080/02786820802709243.
  • Zhang, R., G. Wang, S. Guo, M. L. Zamora, Q. Ying, Y. Lin, W. Wang, M. Hu, and Y. Wang. 2015. Formation of urban fine particulate matter. Chem. Rev. 115 (10):3803–55. doi:10.1021/acs.chemrev.5b00067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.