89
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Capability and efficiency of droplets in removing nanoparticle contaminants from Si wafer via high-speed microdroplet impaction

, , &
Pages 1008-1023 | Received 29 Dec 2023, Accepted 18 Mar 2024, Published online: 16 Apr 2024

References

  • Bergström, L. 1997. Hamaker constants of inorganic materials. Adv. Colloid Interface Sci. 70:125–169. doi:10.1016/S0001-8686(97)00003-1.
  • Burdick, G. M., N. S. Berman, and S. P. Beaudoin. 2005. Hydrodynamic particle removal from surfaces. Thin Solid Films 488 (1–2):116–123. doi:10.1016/j.tsf.2005.04.112.
  • Cho, Y., H. Choi, S. Mo, and T. Kim. 2020. Removal of nano-sized surface particles by CO2 gas cluster collisions for dry cleaning. Microelectron. Eng. 234:111438. doi:10.1016/j.mee.2020.111438.
  • Choudhury, R., J. Choi, S. Yang, Y. J. Kim, and D. Lee. 2017. Maximum spreading of liquid drop on various substrates with different wettabilities. Appl. Surf. Sci. 415:149–154. 10.1016/j.apsusc.2016.12.195.
  • Derjaguin, B. V., V. M. Muller, and Y. P. Toporov. 1975. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53 (2):314–326. doi:10.1016/0021-9797(75)90018-1.
  • Engineering ToolBox. 2004. Retrieved December 1, 2023, from https://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-d_596.html; https://www.engineeringtoolbox.com/water-density-specific-weight-d_595.htm; https://www.engineeringtoolbox.com/water-surface-tension-d_597.html
  • Firmansyah, D. A., R. Kaiser, R. Zahaf, Z. Coker, T. Y. Choi, and D. Lee. 2014. Numerical simulations of supersonic gas atomization of liquid metal droplets. Jpn. J. Appl. Phys. 53 (5S3):05HA09. doi:10.7567/JJAP.53.05HA09.
  • Hanson, B. 1995. The selection and use of titanium: A design guide. London: Institute of Materials, 44.
  • Henry, C., and J. P. Minier. 2014. Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Energy Combust. Sci. 45:1–53. doi:10.1016/j.pecs.2014.06.001.
  • Hong, S., J. Kim, J. Won, N. Qureshi, S. Chae, Y. Wada, H. Hiyama, S. Hamada, and T. Kim. 2019. A water polishing process to improve ceria abrasive removal. ECS J. Solid State Sci. Technol. 8 (8):P430–P436. doi:10.1149/2.0171908jss.
  • Hung, Y. L., M. J. Wang, Y. C. Liao, and S. Y. Lin. 2011. Initial wetting velocity of droplet impact and spreading: Water on glass and parafilm. Colloids Surf. A 384 (1-3):172–179. doi:10.1016/j.colsurfa.2011.03.061.
  • Ibrahim, A. H., P. F. Dunn, and R. M. Brach. 2003. Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. Aerosol Sci. 34 (6):765–782. doi:10.1016/S0021-8502(03)00031-4.
  • Iwasaki, A., A. Higuchi, K. Komori, M. Sato, and H. Shirakawa. 2015. Dual-fluid spray process for particle and fluorocarbon-polymer removal in BEOL applications. ECS Trans. 69 (8):199–205. doi:10.1149/06908.0199ecst.
  • Johnson, K. L., K. Kendall, and A. Roberts. 1971. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 324 (1558):301–313. doi:10.1098/rspa.1971.0141.
  • Jung, S., and I. M. Hutchings. 2012. The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale. Soft Matter. 8 (9):2686–2696. doi:10.1039/c2sm06565g.
  • Kaiser, R., C. Li, S. Yang, and D. Lee. 2018. A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction. Adv. Powder Technol. 29 (3):623–30. doi:10.1016/j.apt.2017.12.003.
  • Kern, W. 1990. The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137 (6):1887–1892. doi:10.1149/1.2086825.
  • Kim, S., K. Park, C. Choi, M. Y. Ha, and D. Lee. 2022. Removal of ultrafine particles in a full-scale two-stage electrostatic precipitator employing a carbon-brush ionizer for residential use. Build. Environ. 223:109493. doi:10.1016/j.buildenv.2022.109493.
  • Kondo, T., and K. Ando. 2019. Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Phys. Fluids 31 (1):013303. doi:10.1063/1.5079282.
  • Lee, J. B., D. Derome, A. Dolatabadi, and J. Carmeliet. 2016. Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments. Langmuir 32 (5):1279–1288. doi:10.1021/acs.langmuir.5b03848.
  • Lee, H., S. You, P. V. Pikhitsa, J. Kim, S. Kwon, C. G. Woo, and M. Choi. 2011. Three-dimensional assembly of nanoparticles from charged aerosols. Nano Lett. 11 (1):119–124. doi:10.1021/nl103787k.
  • Liu, X., X. Zhang, and J. Min. 2019. Maximum spreading of droplets impacting spherical surfaces. Phys. Fluids 31 (9):092102. doi:10.1063/1.5117278.
  • Moram, M. A., Z. H. Barber, C. J. Humphreys, T. B. Joyce, and P. R. Chalker. 2006. Young’s modulus, Poisson’s ratio, and residual stress and strain in (111)-oriented scandium nitride thin films on silicon. J. Appl. Phys. 100 (2):023514. doi:10.1063/1.2217106.
  • Ock, Y., J. Kim, I. Choi, D. S. Kim, M. Choi, and D. Lee. 2018. Size-independent unipolar charging of nanoparticles at high concentrations using vapor condensation and its application for improving DMA size-selection efficiency. J. Aerosol Sci. 121:38–53. doi:10.1016/j.jaerosci.2018.04.007.
  • Okorn-Schmidt, H. F., F. Holsteyns, A. Lippert, D. Mui, M. Kawaguchi, C. Lechner, P. E. Frommhold, T. Nowak, F. Reuter, M. B. Piqué, et al. 2014. Particle cleaning technologies to meet advanced semiconductor device process requirements. ECS J. Solid State Sci. Technol. 3 (1):N3069–N3080. doi:10.1149/2.011401jss.
  • Pasandideh-Fard, M., Y. M. Qiao, S. Chandra, and J. Mostaghimi. 1996. Capillary effects during droplet impact on a solid surface. Phys. Fluids 8 (3):650–659. doi:10.1063/1.868850.
  • Riboux, G., and J. M. Gordillo. 2014. Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2):024507. doi:10.1103/PhysRevLett.113.024507.
  • Roisman, I. V., R. Rioboo, and C. Tropea. 2002. Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022):1411–1430. doi:10.1098/rspa.2001.0923.
  • Sato, M., K. Sotoku, K. Yamaguchi, T. Tanaka, M. Kobayashi, and S. Nadahara. 2011. Analysis on threshold energy of particle removal in spray cleaning technology. ECS Trans. 41 (5):75–82. doi:10.1149/1.3630829.
  • Seike, Y., K. Miyachi, T. Shibata, Y. Kobayashi, S. Kurokawa, and T. Doi. 2010. Silicon wafer cleaning using new liquid aerosol with controlled droplet velocity and size by rotary atomizer method. Jpn. J. Appl. Phys. 49 (6R):066701. doi:10.1143/JJAP.49.066701.
  • Snow, J. T., M. Sato, and T. Tanaka. 2013. Dual-fluid spray cleaning technique for particle removal. In Developments in surface contamination and cleaning, eds. R. Kohli and K. L. Mittal, vol. 6, 109–38. Oxford, UK: Elsevier. doi:10.1016/B978-1-4377-7879-3.00003-0.
  • Soltani, M., and G. Ahmadi. 1994. On particle adhesion and removal mechanisms in turbulent flows. J. Adhes. Sci. Technol. 8 (7):763–785. doi:10.1163/156856194X00799.
  • Tan, H. 2017. Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces. Comput. Fluids 154:142–166. doi:10.1016/j.compfluid.2017.05.014.
  • Visser, C. W., P. E. Frommhold, S. Wildeman, R. Mettin, D. Lohse, and C. Sun. 2015. Dynamics of high-speed micro-drop impact: Numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter. 11 (9):1708–1722. doi:10.1039/C4SM02474E.
  • Visser, C. W., Y. Tagawa, C. Sun, and D. Lohse. 2012. Microdroplet impact at very high velocity. Soft Matter 8 (41):10732–10737. doi:10.1039/c2sm26323h.
  • Voinov, O. V. 1976. Hydrodynamics of wetting. Fluid Dyn. 11 (5):714–721. doi:10.1007/BF01012963.
  • Wang, X. D., D. J. Lee, X. F. Peng, and J. Y. Lai. 2007. Spreading dynamics and dynamic contact angle of non-Newtonian fluids. Langmuir 23 (15):8042–8047. doi:10.1021/la0701125.
  • Wang, M. J., F. H. Lin, Y. L. Hung, and S. Y. Lin. 2009. Dynamic behaviors of droplet impact and spreading: Water on five different substrates. Langmuir 25 (12):6772–6780. doi:10.1021/la9002862.
  • Xu, W., J. Luo, J. Qin, and Y. Zhang. 2017. Maximum deformation ratio of droplets of water-based paint impact on a flat surface. Coatings 7 (6):81. doi:10.3390/coatings7060081.
  • Xu, K., S. Pichler, K. Wostyn, G. Cado, C. Springer, G. W. Gale, M. Dalmer, P. W. Mertens, T. Bearda, E. Gaulhofer, et al. 2009. Removal of nano-particles by aerosol spray: Effect of droplet size and velocity on cleaning performance. SSP. 145–146:31–34. doi:10.4028/www.scientific.net/SSP.145-146.31.
  • Yonemoto, Y., and T. Kunugi. 2017. Analytical consideration of liquid droplet impingement on solid surfaces. Sci. Rep. 7 (1):2362. doi:10.1038/s41598-017-02450-4.
  • You, S., and M. P. Wan. 2013. Mathematical models for the van der Waals force and capillary force between a rough particle and surface. Langmuir 29 (29):9104–9117. doi:10.1021/la401516m.
  • Zoeteweij, M. L., J. C. J. Van der Donck, and R. Versluis. 2009. Particle removal in linear shear flow: Model prediction and experimental validation. J. Adhes. Sci. Technol. 23 (6):899–911. doi:10.1163/156856109X411247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.