298
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Analysis and classification of individual ambient aerosol particles with field-deployable laser-induced breakdown spectroscopy platform

ORCID Icon, , ORCID Icon & ORCID Icon
Received 26 Feb 2024, Accepted 21 Apr 2024, Published online: 15 May 2024

References

  • Asbach, C., A. Schmitz, F. Schmidt, C. Monz, and A. M. Todea. 2017. Intercomparison of a personal CPC and different conventional CPCs. Aerosol Air Qual. Res. 17 (5):1132–41. doi: 10.4209/aaqr.2016.10.0460.
  • Bousquet, B., V. Gardette, V. M. Ros, R. Gaudiuso, M. Dell’Aglio, and A. De Giacomo. 2023. Plasma excitation temperature obtained with Boltzmann plot method: Significance, precision, trueness and accuracy. Spectrochim. Acta, Part B 204:106686. doi: 10.1016/j.sab.2023.106686.
  • Carranza, J. E., B. T. Fisher, G. D. Yoder, and D. W. Hahn. 2001. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 56 (6):851–64. doi: 10.1016/S0584-8547(01)00183-5.
  • Cheng, R. J., D. C. Blanchard, and R. J. Cipriano. 1988. The formation of hollow sea-salt particles from the evaporation of drops of seawater. Atmos. Res. 22 (1):15–25. doi: 10.1016/0169-8095(88)90009-9.
  • Fabre, C., D. Devismes, S. Moncayo, F. Pelascini, F. Trichard, A. Lecomte, B. Bousquet, J. Cauzid, and V. Motto-Ros. 2018. Elemental imaging by laser-induced breakdown spectroscopy for the geological characterization of minerals. J. Anal. At. Spectrom. 33 (8):1345–53. doi: 10.1039/C8JA00048D.
  • Fletcher, R. A., N. W. M. Ritchie, I. M. Anderson, and J. A. Small. 2011. Microscopy and Microanalysis of Individual Collected Particles. In Aerosol Measurement: Principles, Techniques, and Applications: Third Edition ed. P. Kulkarni, P.A. Baron, and K. Willeke, 179–232. Hoboken, NJ: Wiley.
  • Gard, E., J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather. 1997. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal. Chem. 69 (20):4083–91. doi: 10.1021/ac970540n.
  • Gemayel, R., S. Hellebust, B. Temime-Roussel, N. Hayeck, J. T. Van Elteren, H. Wortham, and S. Gligorovski. 2016. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS). Atmos. Meas. Tech. 9 (4):1947–59. doi: 10.5194/amt-9-1947-2016.
  • Hart, M. B., V. Sivaprakasam, J. D. Eversole, L. J. Johnson, and J. Czege. 2015. Optical measurements from single levitated particles using a linear electrodynamic quadrupole trap. Appl. Opt. 54 (31):F174–F181. doi: 10.1364/AO.54.00F174.
  • Heikkilä, P., J. Rossi, A. Rostedt, J. Huhtala, A. Järvinen, J. Toivonen, and J. Keskinen. 2020. Toward elemental analysis of ambient single particles using electrodynamic balance and laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 54 (7):837–48. doi: 10.1080/02786826.2020.1727408.
  • Heikkilä, P., A. Rostedt, J. Toivonen, and J. Keskinen. 2022. Elemental analysis of single ambient aerosol particles using laser-induced breakdown spectroscopy. Sci. Rep. 12 (1):14657. doi: 10.1038/s41598-022-18349-8.
  • Heldal, M., S. Norland, and O. Tumyr. 1985. X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Appl. Environ. Microbiol. 50 (5):1251–7. doi: 10.1128/aem.50.5.1251-1257.1985.
  • Hoose, C., and O. Möhler. 2012. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 12 (20):9817–54. doi: 10.5194/acp-12-9817-2012.
  • Hybl, J. D., S. M. Tysk, S. R. Berry, and M. P. Jordan. 2006. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection. Appl. Opt. 45 (34):8806–14. doi: 10.1364/ao.45.008806.
  • Jahn, L. G., L. G. Jahl, G. D. Bland, B. B. Bowers, L. W. Monroe, and R. C. Sullivan. 2021. Metallic and crustal elements in biomass-burning aerosol and ash: Prevalence, significance, and similarity to soil particles. ACS Earth Space Chem. 5 (1):136–48. doi: 10.1021/acsearthspacechem.0c00191.
  • Järvinen, S. T., and J. Toivonen. 2016. Analysis of single mass-regulated particles in precisely controlled trap using laser-induced breakdown spectroscopy. Opt. Express. 24 (2):1314–23. doi: 10.1364/OE.24.001314.
  • Kramida, A., K. Olsen, and Y. Ralchenko. 2019. NIST LIBS database (Version 1.0); National Institute of Standards and Technology: Gaithersburg, MD, USA, Accessed February 2024 https://physics.nist.gov/LIBS.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–71. doi: 10.1038/nature15371.
  • Li, L., A. S. Wexler, X. Li, L. Hu, and G. Jiang. 2023. In situ characterization of bioaerosols at the single-particle level using single-particle mass spectrometry: A promising tool for defending human health against bioaerosol transmission. Anal. Chem. 95 (29):10839–43. doi: 10.1021/acs.analchem.2c05324.
  • Lu, S., Z. Tan, P. Liu, H. Zhao, D. Liu, S. Yu, P. Cheng, M. S. Win, J. Hu, L. Tian, et al. 2017. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China. Chemosphere 186:278–86. doi: 10.1016/j.chemosphere.2017.07.161.
  • Maeng, H., H. Chae, H. Lee, G. Kim, H. Lee, K. Kim, J. Kwak, G. Cho, and K. Park. 2017. Development of laser-induced breakdown spectroscopy (LIBS) with timed ablation to improve detection efficiency. Aerosol Sci. Technol. 51 (9):1009–15. doi: 10.1080/02786826.2017.1344352.
  • Marguí, E., I. Queralt, and E. de Almeida. 2022. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 303 (Pt 1):135006. doi: 10.1016/j.chemosphere.2022.135006.
  • Martin, A. N., G. R. Farquar, M. Frank, E. E. Gard, and D. P. Fergenson. 2007. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Anal. Chem. 79 (16):6368–75. doi: 10.1021/ac070704s.
  • Paramonov, M., S. Drossaart van Dusseldorp, E. Gute, J. P. D. Abbatt, P. Heikkilä, J. Keskinen, X. Chen, K. Luoma, L. Heikkinen, L. Hao, et al. 2020. Condensation/immersion mode ice-nucleating particles in a boreal environment. Atmos. Chem. Phys. 20 (11):6687–706. doi: 10.5194/acp-20-6687-2020.
  • Park, K., G. Cho, and J. Kwak. 2009. Development of an aerosol focusing-laser induced breakdown spectroscopy (aerosol focusing-LIBS) for determination of fine and ultrafine metal aerosols. Aerosol Sci. Technol. 43 (5):375–86. doi: 10.1080/02786820802662947.
  • Park, S. S., and Y. J. Kim. 2005. Source contributions to fine particulate matter in an Urban Atmosphere. Chemosphere 59 (2):217–26. doi: 10.1016/j.chemosphere.2004.11.001.
  • Purohit, P., F. J. Fortes, and J. J. Laserna. 2017. Atomization efficiency and photon yield in laser-induced breakdown spectroscopy analysis of single nanoparticles in an optical trap. Spectrochim. Acta, Part B 130:75–81. doi: 10.1016/j.sab.2017.02.009.
  • Rai, V. N., and S. N. Thakur. 2007. Fundamentals of laser induced breakdown spectroscopy. In Laser-Induced Breakdown Spectroscopy, eds. J. P. Singh and S. N. Thakur, 83–108. Amsterdam: Elsevier.
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld. 2001. Aerosols, climate, and the hydrological cycle. Science 294 (5549):2119–24. doi: 10.1126/science.1064034.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi: 10.1029/2018RG000615.
  • Saari, S., S. Järvinen, T. Reponen, J. Mensah-Attipoe, P. Pasanen, J. Toivonen, and J. Keskinen. 2016. Identification of single microbial particles using electro-dynamic balance assisted laser-induced breakdown and fluorescence spectroscopy. Aerosol Sci. Technol. 50 (2):126–32. doi: 10.1080/02786826.2015.1134764.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed. New Jersey: John Wiley & Sons.
  • Shen, X., H. Saathoff, W. Huang, C. Mohr, R. Ramisetty, and T. Leisner. 2019. Understanding atmospheric aerosol particles with improved particle identification and quantification by single-particle mass spectrometry. Atmos. Meas. Tech. 12 (4):2219–40. doi: 10.5194/amt-12-2219-2019.
  • Singh, A., and S. Dey. 2012. Influence of aerosol composition on visibility in Megacity Delhi. Atmos. Environ. 62:367–73. doi: 10.1016/j.atmosenv.2012.08.048.
  • Singh, J. P., and S. N. Thakur. 2020. Laser-Induced Breakdown Spectroscopy. 2nd ed. Amsterdam: Elsevier.
  • Sipich, J., C. L'Orange, K. Anderson, C. Limbach, J. Volckens, and A. Yalin. 2022. A direct-reading particle sizer with elemental composition analysis for large inhalable particles. Aerosol Sci. Technol. 56 (3):223–33. doi: 10.1080/02786826.2021.2002255.
  • Sivaprakasam, V., M. B. Hart, and J. D. Eversole. 2017. Surface enhanced Raman spectroscopy of individual suspended aerosol particles. J. Phys. Chem. C 121 (40):22326–34. doi: 10.1021/acs.jpcc.7b05310.
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96 (12):2059–77. doi: 10.1175/BAMS-D-14-00110.1.
  • Thakur, S. N., and J. P. Singh. 2007. Fundamentals of laser induced breakdown spectroscopy. In Laser-Induced Breakdown Spectroscopy, eds. J. P. Singh and S. N. Thakur, 3–21. Amsterdam: Elsevier.
  • Thakur, S. N. 2007. Atomic emission spectroscopy. In Laser-Induced Breakdown Spectroscopy, eds. J. P. Singh and S. N. Thakur, 23–48. Amsterdam: Elsevier.
  • Turpin, B. J., J. J. Huntzicker, and S. V. Hering. 1994. Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmos. Environ. 28 (19):3061–71. doi: 10.1016/1352-2310(94)00133-6.
  • Usher, C. R., A. E. Michel, and V. H. Grassian. 2003. Reactions on mineral dust. Chem. Rev. 103 (12):4883–940. doi: 10.1021/cr020657y.
  • Vlasenko, A., S. Sjögren, E. Weingartner, H. W. Gäggeler, and M. Ammann. 2005. Generation of submicron Arizona test dust aerosol: Chemical and hygroscopic properties. Aerosol Sci. Technol. 39 (5):452–60. doi: 10.1080/027868290959870.
  • Xu, J., H. Wang, X. Li, Y. Li, J. Wen, J. Zhang, X. Shi, M. Li, W. Wang, G. Shi, et al. 2018. Refined source apportionment of coal combustion sources by using single particle mass spectrometry. Sci. Total Environ. 627:633–46. doi: 10.1016/j.scitotenv.2018.01.269.
  • Yatkin, S., and A. Bayram. 2007. Elemental composition and sources of particulate matter in the ambient air of a Metropolitan City. Atmos. Res. 85 (1):126–39. doi: 10.1016/j.atmosres.2006.12.002.
  • Zhang, R., Y. Li, A. L. Zhang, Y. Wang, and M. J. Molina. 2020. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA 117 (26):14857–63. doi: 10.1073/pnas.2009637117.
  • Zhang, Y., T. Zhang, and H. Li. 2021. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta, Part B 181:106218. doi: 10.1016/j.sab.2021.106218.