164
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A distributed parameter model for the solvent evaporation from a saline droplet including internal solute diffusion and heat conduction

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 942-956 | Received 24 Dec 2023, Accepted 10 May 2024, Published online: 13 Jun 2024

References

  • Abdullahi, H., C. L. Burcham, and T. Vetter. 2020. A mechanistic model to predict droplet drying history and particle shell formation in multicomponent systems. Chem. Eng. Sci. 224:115713. doi:10.1016/j.ces.2020.115713.
  • Abramzon, B., and W. A. Sirignano. 1989. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32 (9):1605–18. doi:10.1016/0017-9310(89)90043-4.
  • Adhikari, B., T. Howes, and B. R. Bhandari. 2007. Use of solute fixed coordinate system and method of lines for prediction of drying kinetics and surface stickiness of single droplet during convective drying. Chem. Eng. Process 46 (5):405–19. doi:10.1016/j.cep.2006.06.018.
  • Ali, M., T. Mahmud, P. J. Heggs, and A. E. Bayly. 2017. Modelling drying and crystallisation in a single droplet. EuroDrying’2017 – 6th European Drying Conference.
  • Anderson, E. L., P. Turnham, J. R. Griffin, and C. C. Clarke. 2020. Consideration of the aerosol transmission for COVID-19 and public health. Risk Anal. 40 (5):902–7. doi:10.1111/risa.13500.
  • Asadi, S., N. Bouvier, A. S. Wexler, and W. D. Ristenpart. 2020. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? In. Aerosol Sci. Technol. 1 (2):1–4. doi:10.1080/02786826.2020.1749229.
  • Bridgeman, O. C., and E. W. Aldrich. 1964. Vapor pressure tables for water. Journal of Heat Transfer 86 (2):279–86. doi:10.1115/1.3687121.
  • Brokaw, R. S. 2002. Predicting transport properties of dilute gases. Ind. Eng. Chem. Proc. Des. Dev. 8 (2):240–53. doi:10.1021/i260030a015.
  • Clift, R., J. R. Grace, and M. E. Weber. 1978. Bubbles, drops and particles. New York: Academic Press Inc.
  • Crowe, C. T., J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. 2011. Multiphase flows with droplets and particles. 2nd ed. Boca Raton: CRC Press.
  • De Oliveira, P. M., L. C. C. Mesquita, S. Gkantonas, A. Giusti, and E. Mastorakos. 2021. Evolution of spray and aerosol from respiratory releases: Theoretical estimates for insight on viral transmission. Proc. Math. Phys. Eng. Sci. 477 (2245):20200584. doi:10.1098/rspa.2020.0584.
  • de Souza Lima, R., M. I. Ré, and P. Arlabosse. 2020. Drying droplet as a template for solid formation: A review. In. Powder Technol. 359:161–71. doi:10.1016/j.powtec.2019.09.052.
  • Dormand, J. R., and P. J. Prince. 1980. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1):19–26. doi:10.1016/0771-050X(80)90013-3.
  • Fuchs, N. A. 1959. Evaporation and droplet growth in gaseous media. Oxford: Pergamon Press. doi:10.1016/c2013-0-08145-5.
  • Fuchs, N., and A. Sutugin. 1971. High-dispersed aerosols. In Topics in current aerosol research, eds. G. M. Hidy and J. R. Brock, 1. Oxford: Pergamon. doi:10.1016/b978-0-08-016674-2.50006-6.
  • Gregson, F. K. A. 2020. Evaporation kinetics and particle formation from aerosol solution microdroplets. PhD thesis, University of Bristol.
  • Gregson, F. K. A., J. F. Robinson, R. E. H. Miles, C. P. Royall, and J. P. Reid. 2019. Drying kinetics of salt solution droplets: Water evaporation rates and crystallization. J. Phys. Chem. B 123 (1):266–76. doi:10.1021/acs.jpcb.8b09584.
  • Hairer, E., and G. Wanner. 1991. Solving ordinary differential equations II: Stiff and differential - algebraic problems. 1st ed. Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-662-09947-6.
  • Handscomb, C. S., M. Kraft, and A. E. Bayly. 2009. A new model for the drying of droplets containing suspended solids. Chem. Eng. Sci. 64 (4):628–37. doi:10.1016/j.ces.2008.04.051.
  • Hardy, D. A., J. F. Robinson, T. G. Hilditch, E. Neal, P. Lemaitre, J. S. Walker, and J. P. Reid. 2023. Accurate measurements and simulations of the evaporation and trajectories of individual solution droplets. J. Phys. Chem. B 127 (15):3416–30. doi:10.1021/acs.jpcb.2c08909.
  • Kukkonen, J., T. Vesala, and M. Kulmala. 1989. The interdependence of evaporation and settling for airborne freely falling droplets. J. Aerosol Sci. 20 (7):749–63. doi:10.1016/0021-8502(89)90087-6.
  • Langmuir, I. 1918. The evaporation of small spheres. Physical Review 12 (5):368. doi:10.1103/PhysRev.12.368.
  • Lindfield, G., and J. Penny. 2018. Numerical methods: Using MATLAB. 4th ed. London: Academic Press. doi:10.1016/C2016-0-00395-9.
  • Liu, L., J. Wei, Y. Li, and A. Ooi. 2017. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air. 27 (1):179–90. doi:10.1111/ina.12297.
  • Mao, N., C. K. An, L. Y. Guo, M. Wang, L. Guo, S. R. Guo, and E. S. Long. 2020. Transmission risk of infectious droplets in physical spreading process at different times: A review. In. Build. Environ. 185:107307. doi:10.1016/j.buildenv.2020.107307.
  • Morawska, L., and J. Cao. 2020. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139:105730. doi:10.1016/J.ENVINT.2020.105730.
  • Parienta, D., L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2011. Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. J. Aerosol Sci. 42 (1):1–10. doi:10.1016/j.jaerosci.2010.10.005.
  • Perry, R. H., and D. W. Green. 1997. Perry's chemical Engineers’ handbook. 7th ed. New York: McGraw-Hill Education.
  • Pitzer, K. S. 1973. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77 (2):268–77. doi:10.1021/j100621a026.
  • Poozesh, S., F. Algasem, M. A. Azad, and P. J. Marsac. 2022. Multicomponent droplet drying modeling based on conservation and population balance equations. Pharm. Res. 39 (9):2033–47. doi:10.1007/s11095-022-03248-4.
  • Pourfattah, F., L. P. Wang, W. Deng, Y. F. Ma, L. Hu, and B. Yang. 2021. Challenges in simulating and modeling the airborne virus transmission: A state-of-the-art review. In. Phys. Fluids (1994) 33 (10):101302. doi:10.1063/5.0061469.
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1992. Numerical recipes in C: The art of scientific computing. 2nd ed. Cambridge: Cambridge University Press.
  • Ranz, W. E., and W. R. Marshall. 1952a. Evaporation from drops - Part 1. In. Chem. Eng. Prog. (48:141–6.
  • Ranz, W. E., and W. R. Marshall. 1952b. Evaporation from drops part II. Chem. Eng. Prog. 48 (4):173–80.
  • Redrow, J., S. Mao, I. Celik, J. A. Posada, and Z. g Feng. 2011. Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough. Build. Environ. 46 (10):2042–51. doi:10.1016/j.buildenv.2011.04.011.
  • Rezaei, M., and R. R. Netz. 2021. Water evaporation from solute-containing aerosol droplets: Effects of internal concentration and diffusivity profiles and onset of crust formation. Phys. Fluids (1994) 33 (9):091901. doi:10.1063/5.0060080.
  • Robinson, R. A., and R. H. Stokes. 2012. Electrolyte solutions: Second revised edition. Mineola, NY: Dover Publications.
  • Rogers, R. R., and M. K. Yau. 1989. A short course in cloud physics. 3rd ed. Oxford: Butterworth-Heinemann.
  • Rosenbrock, H. H. 1963. Some general implicit processes for the numerical solution of differential equations. The Computer Journal 5 (4):329–30. doi:10.1093/comjnl/5.4.329.
  • Sadafi, M. H., I. Jahn, A. B. Stilgoe, and K. Hooman. 2014. Theoretical and experimental studies on a solid containing water droplet. Int. J. Heat Mass Transf. 78:25–33. doi:10.1016/j.ijheatmasstransfer.2014.06.064.
  • Sazhin, S. S. 2006. Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32 (2):162–214. doi:10.1016/j.pecs.2005.11.001.
  • Schiesser, W. E., and G. W. Griffiths. 2009. A compendium of partial differential equation models: Method of lines analysis with matlab. New York: Cambridge University Press. doi:10.1017/CBO9780511576270.
  • Schiller, L., and A. Naumann. 1935. A drag coefficient correlation. VDI Zeitung. 77:318–320.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed. Hoboken, NJ: Wiley-Blackwell.
  • Seydel, P., J. Blömer, and J. Bertling. 2006. Modeling particle formation at spray drying using population balances. Drying Technol. 24 (2):137–46. doi:10.1080/07373930600558912.
  • Tang, I. N. 1996. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. 101 (D14):19245–50. doi:10.1029/96JD03003.
  • van der Lijn, J. 1976. The “constant rate period” during the drying of shrinking spheres. Chem. Eng. Sci. 31 (10):929–35. doi:10.1016/0009-2509(76)87043-1.
  • Vehring, R. 2008. Pharmaceutical particle engineering via spray drying. In. Pharm. Res. 25 (5):999–1022. doi:10.1007/s11095-007-9475-1.
  • Vejerano, E. P., and L. C. Marr. 2018. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. R Soc. Interface 15 (139):20170939. doi:10.1098/rsif.2017.0939.
  • Wells, W. F. 1934. On air-borne infection: Study II. Droplets and droplet nuclei. Am. J. Epidemiol. 20 (3):619–27. doi:10.1093/oxfordjournals.aje.a118097.
  • Xie, X., Y. Li, A. T. Y. Chwang, P. L. Ho, and W. H. Seto. 2007. How far droplets can move in indoor environments - revisiting the Wells evaporation-falling curve. Indoor Air 17 (3):211–25. doi:10.1111/j.1600-0668.2007.00469.x.
  • Yarin, A. L., G. Brenn, O. Kastner, D. Rensink, and C. Tropea. 1999. Evaporation of acoustically levitated droplets. J. Fluid Mech. 399:151–204. doi:10.1017/S0022112099006266.