22
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Optimizing the inclination angle of the swirl chamber in dry powder inhalers for improved carrier particle retention

, , , , , , , & ORCID Icon show all
Pages 841-864 | Received 15 May 2023, Accepted 01 May 2024, Published online: 20 Jun 2024

References

  • Alfano, F. O., M. Sommerfeld, F. P. Di Maio, and A. Di Renzo. 2022. Dem analysis of powder deaggregation and discharge from the capsule of a carrier-based dry powder inhaler. Adv. Powder Technol. 33:103853. doi: 10.1016/j.apt.2022.103853.
  • Almeida, L. C., R. Bharadwaj, A. Eliahu, C. R. Wassgren, K. Nagapudi, and A. R. Muliadi. 2022. Capsule-based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data. Eur. J. Pharm. Sci. 175:106226. doi: 10.1016/j.ejps.2022.106226.
  • Benque, B., and J. G. Khinast. 2022. Carrier particle emission and dispersion in transient cfd-dem simulations of a capsule-based dpi. Eur. J. Pharm. Sci. 168:106073. doi: 10.1016/j.ejps.2021.106073.
  • de Boer, A. H., P. Hagedoorn, R. Woolhouse, and E. Wynn. 2012. Computational fluid dynamics (CFD) assisted performance evaluation of the twincer™ disposable high-dose dry powder inhaler. J. Pharm. Pharmacol. 64 (9):1316–25. doi: 10.1111/j.2042-7158.2012.01511.x.
  • Borojeni, A. A. T., W. Gu, B. Asgharian, O. Price, A. P. Kuprat, R. K. Singh, S. Colby, R. A. Corley, and C. Darquenne. 2023. In silico quantification of intersubject variability on aerosol deposition in the oral airway. Pharmaceutics 15 (1):160. doi: 10.3390/pharmaceutics15010160.
  • Chang, R. Y. K., P. C. L. Kwok, S. Ghassabian, J. D. Brannan, H. O. Koskela, and H.-K. Chan. 2020. Cough as an adverse effect on inhalation pharmaceutical products. Br. J. Pharmacol. 177 (18):4096–112. doi: 10.1111/bph.15197.
  • Chavan, V., and R. Dalby. 2000. Effect of rise in simulated inspiratory flow rate and carrier particle size on powder emptying from dry powder inhalers. AAPS PharmSci. 2 (2):E10. doi: 10.1208/ps020210.
  • Cheng, Y. S. 2014. Mechanisms of pharmaceutical aerosol deposition in the respiratory tract. AAPS PharmSciTech 15 (3):630–40. doi: 10.1208/s12249-014-0092-0.
  • Coates, M. S., D. F. Fletcher, H.-K. Chan, and J. A. Raper. 2005. The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm. Res. 22 (6):923–32. doi: 10.1007/s11095-005-4587-y.
  • Crowe, C. T., J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji. 2011. Multiphase Flows with Droplets and Particles. Boca Raton, FL: CRC Press.
  • Cui, Y., S. Schmalfuß, S. Zellnitz, M. Sommerfeld, and N. Urbanetz. 2014. Towards the optimisation and adaptation of dry powder inhalers. Int. J. Pharm. 470 (1–2):120–32. doi: 10.1016/j.ijpharm.2014.04.065.
  • Cui, Y., and M. Sommerfeld. 2015. Forces on micron-sized particles randomly distributed on the surface of larger particles and possibility of detachment. Int. J. Multiphase Flow 72:39–52. doi: 10.1016/j.ijmultiphaseflow.2015.01.006.
  • Cui, Y., and M. Sommerfeld. 2018. Application of lattice-boltzmann method for analysing detachment of micron-sized particles from carrier particles in turbulent flows. Flow, Turbulence and Combustion 100:271–97. doi: 10.1007/s10494-017-9835-9.
  • Cui, Y., and M. Sommerfeld. 2019. The modelling of carrier-wall collision with drug particle detachment for dry powder inhaler applications. Powder Technol. 344:741–55. doi: 10.1016/j.powtec.2018.12.067.
  • Davies, C. N. 1945. Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc. 57:259–70. doi: 10.1088/0959-5309/57/4/301.
  • Godara, N., R. Godara, and M. Khullar. 2011. Impact of inhalation therapy on oral health. Lung India 28 (4):272–5. doi: 10.4103/0970-2113.85689.
  • Guenette, E., A. Barrett, D. Kraus, R. Brody, L. Harding, and G. Magee. 2009. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design. Int. J. Pharm. 380 (1–2):80–8. doi: 10.1016/j.ijpharm.2009.07.002.
  • Hebbink, G. A., M. Jaspers, H. J. Peters, and B. H. Dickhoff. 2022. Recent developments in lactose blend formulations for carrier-based dry powder inhalation. Adv. Drug Deliv. Rev. 189:114527. doi: 10.1016/j.addr.2022.114527.
  • Kim, Y. H., D. D. Li, G. H. Yeoh, and A. Abbas. 2022. Optimization of swirler type dry powder inhaler device design – numerical investigation on the effect of dimple shape, inlet configuration and mouthpiece constriction. J. Aerosol Sci. 159:105893. doi: 10.1016/j.jaerosci.2021.105893.
  • Koullapis, P., S. Kassinos, J. Muela, C. Perez-Segarra, J. Rigola, O. Lehmkuhl, Y. Cui, M. Sommerfeld, J. Elcner, M. Jicha, et al. 2017. Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods. Eur. J. Pharm. Sci. 113:77–94. doi: 10.1016/j.ejps.2017.09.003.
  • Li, Y., M. Han, T. Liu, D. Cun, L. Fang, and M. Yang. 2017. Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator. Carbohydr. Polym. 177:471. doi: 10.1016/j.carbpol.2017.09.038.
  • Liu, T., M. Han, F. Tian, D. Cun, J. Rantanen, and M. Yang. 2018. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: In vitro and in vivo evaluation. Carbohydr. Polym. 181:1143–52. doi: 10.1016/j.carbpol.2017.11.018.
  • Liu, T., S. Tong, Q. Liao, L. Pan, M. Cheng, J. Rantanen, D. Cun, and M. Yang. 2023. Role of dispersion enhancer selection in the development of novel tratinterol hydrochloride dry powder inhalation formulations. Int. J. Pharm. 635:122702. doi: 10.1016/j.ijpharm.2023.122702.
  • Lizal, F., M. Cabalka, M. Maly, J. Elcner, M. Belka, E. L. Sujanska, A. Farkas, P. Starha, O. Pech, O. Misik, et al. 2022. On the behavior of inhaled fibers in a replica of the first airway bifurcation under steady flow conditions. Aerosol Sci. Technol. 56:367–81. doi: 10.1080/02786826.2022.2027334.
  • Meng, K., Y. Pang, Y. Liu, and Y. Cui. 2022. Hydrodynamic force and torque acting on a micron-sized spherical particle attached to a surface with large-scale concave roughness in linear shear flow and the possibility of detachment. J. Fluid Mech. 947:A27. doi: 10.1017/jfm.2022.673.
  • Milenkovic, J., A. Alexopoulos, and C. Kiparissides. 2013. Flow and particle deposition in the turbuhaler: A CFD simulation. Int. J. Pharm. 448 (1):205–13. doi: 10.1016/j.ijpharm.2013.03.004.
  • Nasr, B., G. Ahmadi, A. R. Ferro, and S. Dhaniyala. 2019. A model for particle removal from surfaces with large-scale roughness in turbulent flows. Aerosol Sci. Technol. 54:291–303. doi: 10.1080/02786826.2019.1692126.
  • Robles, J., and L. Motheral. 2014. Hypersensitivity reaction after inhalation of a lactose-containing dry powder inhaler. J. Pediatr. Pharmacol. Ther. 19 (3):206–11. doi: 10.5863/1551-6776-19.3.206.
  • Rubinow, S. I., and J. B. Keller. 1961. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11:447. doi: 10.1017/S0022112061000640.
  • Sarangi, S., K. Thalberg, and G. Frenning. 2021. Effect of carrier size and mechanical properties on adhesive unit stability for inhalation: A numerical study. Powder Technol. 390:230–9. doi: 10.1016/j.powtec.2021.05.081.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. Mon. Weather Rev. 91:99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.
  • Sommerfeld, M. 2022. Detailed evaluation of drug powder deposition in swirl-type dry powder inhalers. Powder Technol. 407:117687. doi: 10.1016/j.powtec.2022.117687.
  • Sommerfeld, M., Y. Cui, and S. Schmalfuß. 2019. Potential and constraints for the application of CFD combined with lagrangian particle tracking to dry powder inhalers. Eur. J. Pharm. Sci. 128:299–324. doi: 10.1016/j.ejps.2018.12.008.
  • Sommerfeld, M., and S. Schmalfuß. 2015. Numerical analysis of carrier particle motion in a dry powder inhaler. Trans. ASME, J. Fluids Eng. 138:041308. doi: 10.1115/1.4031693.
  • Sommerfeld, M., B. van Wachem, and R. Oliemans. 2008. Best Practice Guidelines: Computational Fluid Dynamics of Dispersed Multi-Phase Flows. Bushey, UK: European Research Community on Flow, Turbulence and Combustion (ERCOFTAC). https://www.ercoftac.org/publications/ercoftac_best_practice_guidelines/dispersed_multi-phase_flows_dmpf/
  • Stahlhofen, W., G. Rudolf, and A. James. 1989. Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2:285–308. doi: 10.1089/jam.1989.2.285.
  • Szabová, J., O. Mišík, J. Fučík, K. Mrázová, L. Mravcová, J. Elcner, F. Lízal, V. Krzyžánek, and F. Mravec. 2023. Liposomal form of erlotinib for local inhalation administration and efficiency of its transport to the lungs. Int. J. Pharm. 634:122695. doi: 10.1016/j.ijpharm.2023.122695.
  • Tong, Z., H. Kamiya, A. Yu, H.-K. Chan, and R. Yang. 2014. Multi-scale modelling of powder dispersion in a carrier-based inhalation system. Pharm. Res. 32 (6):2086–96. doi: 10.1007/s11095-014-1601-2.
  • Tong, Z., B. Zheng, R. Yang, A. Yu, and H. Chan. 2013. CFD-DEM investigation of the dispersion mechanisms in commercial dry powder inhalers. Powder Technol. 240:19–24. doi: 10.1016/j.powtec.2012.07.012.
  • Versteeg, H. K., D. L. Roberts, F. Chambers, A. Cooper, M. Copley, J. P. Mitchell, and H. Mohammed. 2020. A cross-industry assessment of the flow rate-elapsed time profiles of test equipment typically used for dry-powder inhaler (DPI) testing: Part 2– analysis of transient air flow in the testing of DPIs with compendial cascade impactors. Aerosol. Sci. Technol. 54:1448–70. doi: 10.1080/02786826.2020.1792825.
  • van Wachem, B., K. Thalberg, J. Remmelgas, and I. Niklasson-Björn. 2016. Simulation of dry powder inhalers: Combining micro-scale, meso-scale and macro-scale modeling. AlChE. J. 63:501–16. doi: 10.1002/aic.15424.
  • Wedel, J., P. Steinmann, M. Štrakl, M. Hriberšek, Y. Cui, and J. Ravnik. 2022. Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition—a CFD study. Comput. Methods Appl. Mech. Eng. 401:115372. doi: 10.1016/j.cma.2022.115372.
  • Wedel, J., P. Steinmann, M. Štrakl, M. Hriberšek, and J. Ravnik. 2023. Shape matters: Lagrangian tracking of complex nonspherical microparticles in superellipsoidal approximation. Int. J. Multiphase Flow 158:104283. doi: 10.1016/j.ijmultiphaseflow.2022.104283.
  • Yang, J., C. Y. Wu, and M. Adams. 2015. DEM analysis of the effect of particle–wall impact on the dispersion performance in carrier-based dry powder inhalers. Int. J. Pharm. 487 (1–2):32–8. doi: 10.1016/j.ijpharm.2015.04.006.
  • Yunus Cengel, J. C. 2017. Fluid Mechanics: Fundamentals and Applications. New York, NY: McGraw Hill Book Co.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.