233
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The hygroscopicity of nano-plastic particles and implications for cloud formation and climate

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1024-1032 | Received 04 Jan 2024, Accepted 21 May 2024, Published online: 21 Jun 2024

References

  • Aeschlimann, M., G. Li, Z. A. Kanji, and D. M. Mitrano. 2022. Potential impacts of atmospheric microplastics and nanoplastics on cloud formation processes. Nat. Geosci. 15 (12):967–75. doi: 10.1038/s41561-022-01051-9.
  • Allen, S., D. Allen, K. Moss, G. Le Roux, V. R. Phoenix, and J. E. Sonke. 2020. Examination of the ocean as a source for atmospheric microplastics. PLoS One. 15 (5):e0232746. doi: 10.1371/JOURNAL.PONE.0232746.
  • Allen, S., D. Allen, V. R. Phoenix, G. Le Roux, P. Durántez Jiménez, A. Simonneau, S. Binet, and D. Galop. 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12 (5):339–44. doi: 10.1038/s41561-019-0335-5.
  • Andrady, A. L. 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62 (8):1596–605. doi: 10.1016/j.marpolbul.2011.05.030.
  • Bergmann, M., S. Mützel, S. Primpke, M. B. Tekman, J. Trachsel, and G. Gerdts. 2019. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5 (8):eaax1157. doi: 10.1126/sciadv.aax1157.
  • Biermann, L., E. Brepohl, C. Eichert, M. Paschetag, M. Watts, and S. Scholl. 2021. Development of a continuous PET depolymerization process as a basis for a back-to-monomer recycling method. Green Process. Synth. 10 (1):361–73. doi: 10.1515/GPS-2021-0036/MACHINEREADABLECITATION/RIS.
  • Cózar, A., E. Martí, C. M. Duarte, J. García-de-Lomas, E. Van Sebille, T. J. Ballatore, V. M. Eguíluz, J. Ignacio González-Gordillo, M. L. Pedrotti, F. Echevarría, et al. 2017. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci. Adv. 3 (4):e1600582. doi: 10.1126/sciadv.1600582.
  • Demott, P. J., A. J. Prenni, G. R. McMeeking, R. C. Sullivan, M. D. Petters, Y. Tobo, M. Niemand, O. Möhler, J. R. Snider, Z. Wang, et al. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmos. Chem. Phys. 15 (1):393–409. doi: 10.5194/acp-15-393-2015.
  • Fan, W., J. A. Salmond, K. N. Dirks, P. C. Sanz, G. M. Miskelly, and J. D. Rindelaub. 2022. Evidence and mass quantification of atmospheric microplastics in a Coastal New Zealand City. Environ. Sci. Technol. 56 (24):17556–68. doi: 10.1021/ACS.EST.2C05850.
  • Filipe, V., A. Hawe, and W. Jiskoot. 2010. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27 (5):796–810. doi: 10.1007/s11095-010-0073-2.
  • Flory, P. J. 1942. The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: Polymer 1-polymer 2-solvent. Statistical Mechanics of Cross-Linked Polymer Networks IISwellingJ. Chem. Phys. 10 (1):51–61. doi: 10.1063/1.1723621.
  • Gillibert, R., G. Balakrishnan, Q. Deshoules, M. Tardivel, A. Magazzù, M. G. Donato, O. M. Maragò, M. Lamy de La Chapelle, F. Colas, F. Lagarde, et al. 2019. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 53 (15):9003–13. doi: 10.1021/acs.est.9b03105.
  • Gohil, K., R. Barrett, D. Rastogi, C.-N. Mao, Q. Yao, and A. Asa-Awuku. 2023. Solubility considerations for cloud condensation nuclei (CCN) activity analysis of pure and mixed black carbon species. Phys. Chem. A. 127 (17):3873–82. doi:10.1021/ACS.JPCA.2C08585.
  • Gohil, K., C.-N. Mao, D. Rastogi, C. Peng, M. Tang, and A. Asa-Awuku. 2022. Hybrid water adsorption and solubility partitioning for aerosol hygroscopicity and droplet growth. Atmos. Chem. Phys. 22 (19):12769–87. doi: 10.5194/acp-22-12769-2022.
  • Haegerbaeumer, A., M. T. Mueller, H. Fueser, and W. Traunspurger. 2019. Impacts of micro- and nano-sized plastic particles on benthic invertebrates: A literature review and gap analysis. Front. Environ. Sci. 7:17. doi: 10.3389/fenvs.2019.00017.
  • Hiranuma, N., M. Kohn, M. S. Pekour, D. A. Nelson, J. E. Shilling, and D. J. Cziczo. 2011. Droplet activation, separation, and compositional analysis: Laboratory studies and atmospheric measurements. Atmos. Meas. Tech. 4 (10):2333–43. doi: 10.5194/amt-4-2333-2011.
  • Ivleva, N. P. 2021. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chem. Rev. 121 (19):11886–936. doi: 10.1021/ACS.CHEMREV.1C00178/ASSET/IMAGES/LARGE/CR1C00178_0015.JPEG.
  • Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, et al. 2004. Identification of polymers as major components of atmospheric organic aerosols. Science 303 (5664):1659–62. doi: 10.1126/SCIENCE.1092185.
  • Karim, S. S., S. Farrukh, T. Matsuura, M. Ahsan, A. Hussain, S. Shakir, L. F. Chuah, M. Hasan, and A. Bokhari. 2022. Model analysis on effect of temperature on the solubility of recycling of Polyethylene Terephthalate (PET) plastic. Chemosphere 307 (Pt 3):136050. doi: 10.1016/J.CHEMOSPHERE.2022.136050.
  • Kreidenweis, S. M., and A. Asa-Awuku. 2013. Aerosol hygroscopicity: Particle water content and its role in atmospheric processes. In Treatise on geochemistry, eds. H. D. Holland and K. K. Turekian, 2nd ed., 331–61. Elsevier Science. doi: 10.1016/B978-0-08-095975-7.00418-6.
  • Kumar, P., A. Nenes, and I. N. Sokolik. 2009. Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol. Geophys. Res. Lett. 36 (24):L24804. doi:10.1029/2009GL040827.
  • Laaksonen, A., J. Malila, A. Nenes, H. M. Hung, and J. P. Chen. 2016. Surface fractal dimension, water adsorption efficiency and cloud nucleation activity of insoluble aerosol. Sci. Rep. 6 (1):25504. doi: 10.1038/srep25504.
  • Lai, Y., L. Dong, Q. Li, P. Li, Z. Hao, S. Yu, and J. Liu. 2021. Counting nanoplastics in environmental waters by single particle inductively coupled plasma mass spectroscopy after cloud-point extraction and in situ labeling of gold nanoparticles. Environ. Sci. Technol. 55 (8):4783–91. doi: 10.1021/ACS.EST.0C06839/SUPPL_FILE/ES0C06839_SI_001.PDF.
  • Lehmann, M., L. M. Oehlschlägel, F. P. Häusl, A. Held, and S. Gekle. 2021. Ejection of marine microplastics by raindrops: A computational and experimental study. Micropl&Nanopl. 1 (1):1–19. doi: 10.1186/s43591-021-00018-8.
  • Ma, Y., A. Huang, S. Cao, F. Sun, L. Wang, H. Guo, and R. Ji. 2016. Effects of nanoplastics and microplastics on toxicity, bioaccumulation, and environmental fate of phenanthrene in fresh water. Environ. Pollut. 219:166–73. doi: 10.1016/j.envpol.2016.10.061.
  • Maláč, J., V. Altmann, and J. Zelinger. 1970. Properties of PVC. II. Properties of PVC compounds with solvents. J. Appl. Polym. Sci. 14 (1):161–73. doi: 10.1002/app.1970.070140116.
  • Mao, C.-N., K. Gohil, and A. A. Asa-Awuku. 2022. A single-parameter hygroscopicity model for functionalized insoluble aerosol surfaces. Atmos. Chem. Phys. 22 (19):13219–28. doi: 10.5194/acp-22-13219-2022.
  • Mao, C. N., K. A. Malek, and A. Asa-Awuku. 2021. Hygroscopicity and the water-polymer interaction parameter of nano-sized biodegradable hydrophilic substances. Aerosol Sci. Technol. 55 (10):1115–24. doi: 10.1080/02786826.2021.1931012.
  • Materić, D., A. Kasper-Giebl, D. Kau, M. Anten, M. Greilinger, E. Ludewig, E. Van Sebille, T. Röckmann, and R. Holzinger. 2020. Micro-and nanoplastics in alpine snow: A new method for chemical identification and (semi)quantification in the nanogram range. Environ. Sci. Technol. 54 (4):2353–9. doi: 10.1021/ACS.EST.9B07540/SUPPL_FILE/ES9B07540_SI_005.ZIP.
  • McCall, D. W., D. C. Douglass, L. L. Blyler, G. E. Johnson, L. W. Jelinski, and H. E. Bair. 1984. Solubility and diffusion of water in low-density polyethylene. Macromolecules 17 (9):1644–9. doi: 10.1021/ma00139a001.
  • Medronho, B., A. Romano, M. G. Miguel, L. Stigsson, and B. Lindman. 2012. Rationalizing cellulose (in)solubility: Reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19 (3):581–7. doi: 10.1007/s10570-011-9644-6.
  • Moore, R. H., A. Nenes, and J. Medina. 2010. Scanning mobility CCN analysis—a method for fast measurements of size-resolved CCN distributions and activation kinetics. Aerosol. Sci. Technol. 44 (10):861–71. doi: 10.1080/02786826.2010.498715.
  • Munari, C., V. Infantini, M. Scoponi, E. Rastelli, C. Corinaldesi, and M. Mistri. 2017. Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 122 (1-2):161–5. doi: 10.1016/j.marpolbul.2017.06.039.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi: 10.5194/acp-7-1961-2007.
  • Petters, M. D., and S. M. Kreidenweis. 2008. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity - part 2: Including solubility. Atmos. Chem. Phys. 8 (20):6273–9. doi: 10.5194/ACP-8-6273-2008.
  • Petters, S. S., E. R. Kjærgaard, F. Hasager, A. Massling, M. Glasius, and M. Bilde. 2023. Morphology and hygroscopicity of nanoplastics in sea spray. Phys. Chem. Chem. Phys. 25 (47):32430–42. doi: 10.1039/D3CP03793B.
  • Prata, J. C. 2018. Airborne microplastics: Consequences to human health? Environ. Pollut. 234:115–26. doi: 10.1016/j.envpol.2017.11.043.
  • Raincrow, K. L., H. H. Al-Mashala, and E. G. Schnitzler. 2024. Partitioning of secondary organic aerosol onto nanoplastics leading to hygroscopic partially-engulfed particles. Environ. Sci. Atmos. 4 (1):9–17. doi: 10.1039/D3EA00103B.
  • Roberts, G. C., and A. Nenes. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 39 (3):206–21. doi: 10.1080/027868290913988.
  • Seinfeld, J. H., S. N. Pandis, and K. Noone. 1998. Atmospheric chemistry and physics: From air pollution to climate change. Phys. Today 51 (10):88–90. doi: 10.1063/1.882420.
  • Shi, C., M. Wang, Z. Wang, G. Qu, W. Jiang, X. Pan, and M. Fang. 2023. Oligomers from the synthetic polymers: Another potential iceberg of new pollutants. Environ. Health 1 (4):228–35. doi: 10.1021/envhealth.3c00086.
  • Sökmen, T. Ö., E. Sulukan, M. Türkoğlu, A. Baran, M. Özkaraca, and S. B. Ceyhun. 2020. Polystyrene nanoplastics (20 nm) are able to bioaccumulate and cause oxidative DNA damages in the brain tissue of zebrafish embryo (Danio rerio). Neurotoxicology 77:51–9. doi: 10.1016/j.neuro.2019.12.010.
  • Sorjamaa, R., and A. Laaksonen. 2007. The effect of H2O adsorption on cloud drop activation of insoluble particles: A theoretical framework. Atmos. Chem. Phys. 7 (24):6175–80. doi: 10.5194/ACP-7-6175-2007.
  • Sullivan, R. C., M. J. K. Moore, M. D. Petters, S. M. Kreidenweis, G. C. Roberts, and K. A. Prather. 2009. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 9 (10):3303–16. doi:10.5194/acp-9-3303-2009.
  • Tang, M., C. K. Chan, Y. J. Li, H. Su, Q. Ma, Z. Wu, G. Zhang, Z. Wang, M. Ge, M. Hu, et al. 2019. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. 19 (19):12631–86. doi: 10.5194/acp-19-12631-2019.
  • Ter Halle, A., L. Jeanneau, M. Martignac, E. Jardé, B. Pedrono, L. Brach, and J. Gigault. 2017. Nanoplastic in the north Atlantic subtropical gyre. Environ. Sci. Technol. 51 (23):13689–97. doi: 10.1021/acs.est.7b03667.
  • Trainic, M., J. M. Flores, I. Pinkas, M. L. Pedrotti, F. Lombard, G. Bourdin, G. Gorsky, E. Boss, Y. Rudich, A. Vardi, et al. 2020. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Environ. 1 (1):1–9. doi: 10.1038/s43247-020-00061-y.
  • Wang, B., A. T. Lambe, P. Massoli, T. B. Onasch, P. Davidovits, D. R. Worsnop, and D. A. Knopf. 2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation. J. Geophys. Res. 117 (D16):16209. doi: 10.1029/2012JD018063.
  • Wang, S. C., and R. C. Flagan. 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13 (2):230–40. doi: 10.1080/02786829008959441.
  • Wang, Z., N. K. Saadé, and P. A. Ariya. 2021. Advances in ultra-trace analytical capability for micro/nanoplastics and water-soluble polymers in the environment: Fresh falling urban snow. Environ. Pollut. 276:116698. doi: 10.1016/J.ENVPOL.2021.116698.
  • Williams, J., M. De Reus, R. Krejci, H. Fischer, and J. Ström. 2002. Application of the variability-size relationship to atmospheric aerosol studies: Estimating aerosol lifetimes and ages. Atmos. Chem. Phys. 2 (2):133–45. doi: 10.5194/acp-2-133-2002.
  • Wlasits, P. J., R. Konrat, and P. M. Winkler. 2023. Heterogeneous nucleation of supersaturated water vapor onto sub-10 nm nanoplastic particles. Environ. Sci. Technol. 57 (4):1584–91. doi: 10.1021/ACS.EST.2C07643/ASSET/IMAGES/LARGE/ES2C07643_0007.JPEG.
  • Yang, T., Y. Xu, G. Liu, and B. Nowack. 2024. Oligomers are a major fraction of the submicrometre particles released during washing of polyester textiles. Nat. Water 2 (2):151–60. doi: 10.1038/s44221-023-00191-5.
  • Yao, Q., A. Asa-Awuku, C. D. Zangmeister, and J. G. Radney. 2020. Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape. Aerosol Sci. Technol. 54 (10):1197–209. doi: 10.1080/02786826.2020.1763248.
  • Zangmeister, C. D., J. G. Radney, K. D. Benkstein, and B. Kalanyan. 2022. Common single-use consumer plastic products release trillions of sub-100 nm nanoparticles per liter into water during normal use. Environ. Sci. Technol. 56 (9):5448–55. doi: 10.1021/ACS.EST.1C06768.