230
Views
0
CrossRef citations to date
0
Altmetric
Original Article

In-situ observations of charged Saharan dust from an uncrewed aircraft system

ORCID Icon, , , , , , ORCID Icon, & show all
Received 14 Mar 2024, Accepted 11 Jun 2024, Published online: 11 Jul 2024

References

  • Adebiyi, A. A., and J. F. Kok. 2020. Climate models miss most of the coarse dust in the atmosphere. Sci. Adv. 6 (15):eaaz9507. doi:10.1126/sciadv.aaz9507.
  • Aminou, D. 2002. MSG’S Seviri instrument. ESA Bull. 111 15–17.
  • Baumgaertner, A., G. Lucas, J. Thayer, and S. Mallios. 2014. On the role of clouds in the fair weather part of the global electric circuit. Atmos. Chem. Phys. 14 (16):8599–610. doi:10.5194/acp-14-8599-2014.
  • Bazilevskaya, G., I. Usoskin, E. Flückiger, R. Harrison, L. Desorgher, R. Bütikofer, M. Krainev, V. Makhmutov, Y. I. Stozhkov, A. Svirzhevskaya, et al. 2008. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137 (1–4):149–73. doi:10.1007/s11214-008-9339-y.
  • Brindley, H., P. Knippertz, C. Ryder, and I. Ashpole. 2012. A critical evaluation of the ability of the spinning enhanced visible and infrared imager (Seviri) thermal infrared red-green-blue rendering to identify dust events: Theoretical analysis. J. Geophys. Res. 117 (D7). doi:10.1029/2011JD017326.
  • Carlson, T. N., and S. G. Benjamin. 1980. Radiative heating rates for Saharan dust. J. Atmos. Sci. 37 (1):193–213. doi:10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.
  • Daskalopoulou, V., S. A. Mallios, Z. Ulanowski, G. Hloupis, A. Gialitaki, I. Tsikoudi, K. Tassis, and V. Amiridis. 2021. The electrical activity of Saharan dust as perceived from surface electric field observations. Atmos. Chem. Phys. 21 (2):927–49. doi:10.5194/acp-21-927-2021.
  • Esposito, F., R. Molinaro, C. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, et al. 2016. The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43 (10):5501–8. doi:10.1002/2016GL068463.
  • Fernald, F. G. 1984. Analysis of atmospheric Lidar observations: Some comments. Appl. Opt. 23 (5):652–3. doi:10.1364/ao.23.000652.
  • Franzese, G., F. Esposito, R. Lorenz, S. Silvestro, C. I. Popa, R. Molinaro, F. Cozzolino, C. Molfese, L. Marty, and N. Deniskina. 2018. Electric properties of dust devils. Earth Planet. Sci. Lett. 493:71–81. doi:10.1016/j.epsl.2018.04.023.
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin. 2001. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106 (D17):20255–73. doi:10.1029/2000JD000053.
  • Goudie, A. S., and N. J. Middleton. 2001. Saharan dust storms: Nature and consequences. Earth. Sci. Rev. 56 (1–4):179–204. doi:10.1016/S0012-8252(01)00067-8.
  • Granados-Muñoz, M. J., J. A. Bravo-Aranda, D. Baumgardner, J. L. Guerrero-Rascado, D. Pérez-Ramírez, F. Navas-Guzmán, I. Veselovskii, H. Lyamani, A. Valenzuela, F. J. Olmo, et al. 2016. A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event. Atmos. Meas. Tech. 9 (3):1113–33. doi:10.5194/amt-9-1113-2016.
  • Gringel, W., and R. Muhleisen. 1978. Sahara dust concentration in the troposphere over the North Atlantic derived from measurements of air conductivity. Beitr. Phys. Atmosph. 2 (51): 121–8.
  • Hagan, D. H., and J. H. Kroll. 2020. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 13 (11):6343–55. doi:10.5194/amt-13-6343-2020.
  • Harrison, R., and K. Carslaw. 2003. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 41 (3). doi:10.1029/2002RG000114.
  • Harrison, R. G., K. A. Nicoll, and K. L. Aplin. 2017. Evaluating stratiform cloud base charge remotely. Geophys. Res. Lett. 44 (12):6407–12. doi:10.1002/2017GL073128.
  • Harrison, R. G., K. A. Nicoll, E. Mareev, N. Slyunyaev, and M. J. Rycroft. 2020. Extensive layer clouds in the global electric circuit: Their effects on vertical charge distribution and storage. Proc. Math. Phys. Eng. Sci. 476 (2238):20190758. doi:10.1098/rspa.2019.0758.
  • Harrison, R. G., K. A. Nicoll, G. J. Marlton, C. L. Ryder, and A. J. Bennett. 2018. Saharan dust plume charging observed over the UK. Environ. Res. Lett. 13 (5):054018. doi:10.1088/1748-9326/aabcd9.
  • Haywood, J. M., P. N. Francis, M. D. Glew, and J. P. Taylor. 2001. Optical properties and direct radiative effect of Saharan dust: A case study of two Saharan dust outbreaks using aircraft data. J. Geophys. Res. 106 (D16):18417–30. doi:10.1029/2000JD900319.
  • Holben, B. N., T. F. Eck, I. a Slutsker, D. Tanré, J. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, et al. 1998. Aeronet-a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66 (1):1–16. doi:10.1016/S0034-4257(98)00031-5.
  • Hoppel, W. A. 1986. Atmospheric electricity in the planetary boundary layer. In Earth's Electrical Environment, ed. National Research Council, 149–165. Washington, DC: National Academies Press.
  • Israelevich, P., E. Ganor, P. Alpert, P. Kishcha, and A. Stupp. 2012. Predominant transport paths of saharan dust over the Mediterranean Sea to Europe. J. Geophys. Res. 117 (D2). doi:10.1029/2011JD016482.
  • Jaenicke, R., and T. Hanusch. 1993. Simulation of the optical particle counter forward scattering spectrometer probe 100 (FSSP-100). Aerosol Sci. Technol. 18 (4):309–22. doi:10.1080/02786829308959607.
  • Johnson, B., and S. Osborne. 2011. Physical and optical properties of mineral dust aerosol measured by aircraft during the GERBILS campaign. Quart. J. Royal Meteoro. Soc. 137 (658):1117–30. doi:10.1002/qj.777.
  • Kamra, A. 1972. Measurements of the electrical properties of dust storms. J. Geophys. Res. 77 (30):5856–69. doi:10.1029/JC077i030p05856.
  • Katz, S., Y. Yair, C. Price, R. Yaniv, I. Silber, B. Lynn, and B. Ziv. 2018. Electrical properties of the 8–12th September, 2015 massive dust outbreak over the Levant. Atmos. Res. 201:218–25. doi:10.1016/j.atmosres.2017.11.004.
  • Kezoudi, M., C. Keleshis, P. Antoniou, G. Biskos, M. Bronz, C. Constantinides, M. Desservettaz, R.-S. Gao, J. Girdwood, J. Harnetiaux, et al. 2021a. The unmanned systems research laboratory (USRL): A new facility for UAV-based atmospheric observations. Atmosphere 12 (8):1042. doi:10.3390/atmos12081042.
  • Kezoudi, M., M. Tesche, H. Smith, A. Tsekeri, H. Baars, M. Dollner, V. Estellés, J. Bühl, B. Weinzierl, Z. Ulanowski, et al. 2021b. Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter. Atmos. Chem. Phys. 21 (9):6781–97. doi:10.5194/acp-21-6781-2021.
  • Kim, M.-H., A. H. Omar, J. L. Tackett, M. A. Vaughan, D. M. Winker, C. R. Trepte, Y. Hu, Z. Liu, L. R. Poole, M. C. Pitts, et al. 2018. The CALIPSO version 4 automated aerosol classification and Lidar ratio selection algorithm. Atmos. Meas. Tech. 11 (11):6107–35. doi:10.5194/amt-11-6107-2018.
  • Klett, J. D. 1981. Stable analytical inversion solution for processing LIDAR returns. Appl. Opt. 20 (2):211–20. doi:10.1364/AO.20.000211.
  • Lekas, T. I. 2019. Electrostatic charging of an aircraft due to airborne dust particles impacts. CEAS Aeronaut. J. 10 (3):903–8. doi:10.1007/s13272-018-00355-0.
  • Lekas, T. I., J. Kushta, S. Solomos, and G. Kallos. 2014. Some considerations related to flight in dusty conditions. AOP. 3 (1):45–56. doi:10.3233/AOP-140043.
  • Lensky, I. M., and D. Rosenfeld. 2008. Clouds-aerosols-precipitation satellite analysis tool (CAPSAT). Atmos. Chem. Phys. 8 (22):6739–53. doi:10.5194/acp-8-6739-2008.
  • Mallios, S., V. Daskalopoulou, V. Spanakis-Misirlis, G. Hloupis, and V. Amiridis. 2023. Novel measurements of desert dust electrical properties: A multi-instrument approach during the ASKOS 2022 campaign. Environ. Sci. Proceed. 26 (1):22.
  • Mallios, S. A., V. Daskalopoulou, and V. Amiridis. 2022. Modeling of the electrical interaction between desert dust particles and the Earth’s atmosphere. J. Aerosol Sci. 165:106044. doi:10.1016/j.jaerosci.2022.106044.
  • Mallios, S. A., G. Papangelis, G. Hloupis, A. Papaioannou, V. Daskalopoulou, and V. Amiridis. 2021. Modeling of spherical dust particle charging due to ion attachment. Front. Earth Sci. 9:709890. doi:10.3389/feart.2021.709890.
  • Mamali, D., E. Marinou, J. Sciare, M. Pikridas, P. Kokkalis, M. Kottas, I. Binietoglou, A. Tsekeri, C. Keleshis, R. Engelmann, et al. 2018. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events. Atmos. Meas. Tech. 11 (5):2897–910. doi:10.5194/amt-11-2897-2018.
  • Marenco, F., C. Ryder, V. Estellés, D. O'Sullivan, J. Brooke, L. Orgill, G. Lloyd, and M. Gallagher. 2018. Unexpected vertical structure of the Saharan Air Layer and giant dust particles during AER-D. Atmos. Chem. Phys. 18 (23):17655–68. doi:10.5194/acp-18-17655-2018.
  • Maring, H., D. Savoie, M. Izaguirre, L. Custals, and J. Reid. 2003. Mineral dust aerosol size distribution change during atmospheric transport. J. Geophys. Res. 108 (D19). doi:10.1029/2002JD002536.
  • Martínez, M. A., J. Ruiz, and E. Cuevas. 2009. Use of seviri images and derived products in a wmo sand and dust storm warning system. IOP Conf. Ser: Earth Environ. Sci. 7:012004. doi:10.1088/1755-1307/7/1/012004.
  • Mashni, H., H. Knaus, A. Platis, and J. Bange. 2023. Development of an airfoil-based passive volumetric air sampling and flow control system for fixed-wing UAS. Bull. Atmos. Sci. Technol. 4 (1):6. doi:10.1007/s42865-023-00057-4.
  • Mauz, M., A. Rautenberg, A. Platis, M. Cormier, and J. Bange. 2019. First identification and quantification of detached-tip vortices behind a wind energy converter using fixed-wing unmanned aircraft system. Wind Energ. Sci. 4 (3):451–63. doi:10.5194/wes-4-451-2019.
  • Nicoll, K., and R. Harrison. 2009. A lightweight balloon-carried cloud charge sensor. Rev. Sci. Instrum. 80 (1):014501. doi:10.1063/1.3065090.
  • Nicoll, K., and R. Harrison. 2011. Charge measurements in stratiform cloud from a balloon based sensor. J. Phys: Conf. Ser. 301:012003. doi:10.1088/1742-6596/301/1/012003.
  • Nicoll, K., R. Harrison, and Z. Ulanowski. 2010. Observations of Saharan dust layer electrification. Environ. Res. Lett. 6 (1):014001. doi:10.1088/1748-9326/6/1/014001.
  • Nicoll, K., and R. G. Harrison. 2016. Stratiform cloud electrification: Comparison of theory with multiple in-cloud measurements. Quart. J. Royal Meteoro. Soc. 142 (700):2679–91. doi:10.1002/qj.2858.
  • Nicoll, K. A., R. G. Harrison, H. G. Silva, R. Salgado, M. Melgâo, and D. Bortoli. 2018. Electrical sensing of the dynamical structure of the planetary boundary layer. Atmos. Res. 202:81–95. doi:10.1016/j.atmosres.2017.11.009.
  • Nurowska, K., M. Mohammadi, S. Malinowski, and K. Markowicz. 2022. Applicability of the low-cost optical particle counter OPC-N3 for microphysical measurements of fog. Atmos. Meas. Tech. Discuss. 2022:1–25.
  • O'Sullivan, D., F. Marenco, C. L. Ryder, Y. Pradhan, Z. Kipling, B. Johnson, A. Benedetti, M. Brooks, M. McGill, J. Yorks, et al. 2020. Models transport Saharan dust too low in the atmosphere: A comparison of the MetUM and CAMS forecasts with observations. Atmos. Chem. Phys. 20 (21):12955–82. doi:10.5194/acp-20-12955-2020.
  • Papetta, A., F. Marenco, R.-E. Mamouri, A. Nisantzi, I. E. Popovici, P. Goloub, M. Kezoudi, S. Victori, and J. Sciare. 2023. Lidar depolarization characterization using a reference system. EGUsphere 2023:1–25.
  • Perala, R. 2009. A critical review of precipitation static research since the 1930’s and comparison to aircraft charging by dust. Electro Magnetic Applications Inc 7655, Denver, CO.
  • Platis, A., B. Altstädter, B. Wehner, N. Wildmann, A. Lampert, M. Hermann, W. Birmili, and J. Bange. 2016. An observational case study on the influence of atmospheric boundary-layer dynamics on new particle formation. Boundary-Layer Meteorol. 158 (1):67–92. doi:10.1007/s10546-015-0084-y.
  • Rautenberg, A., M. Schön, K. Zum Berge, M. Mauz, P. Manz, A. Platis, B. van Kesteren, I. Suomi, S. T. Kral, and J. Bange. 2019. The multi-purpose airborne sensor carrier MASC-3 for wind and turbulence measurements in the atmospheric boundary layer. Sensors 19 (10):2292. doi:10.3390/s19102292.
  • Renard, J.-B., F. Dulac, G. Berthet, T. Lurton, D. Vignelles, F. Jégou, T. Tonnelier, M. Jeannot, B. Couté, R. Akiki, et al. 2016. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles–part 1: Principle of measurements and instrument evaluation. Atmos. Meas. Tech. 9 (4):1721–42. doi:10.5194/amt-9-1721-2016.
  • Renard, J.-B., F. Dulac, P. Durand, Q. Bourgeois, C. Denjean, D. Vignelles, B. Couté, M. Jeannot, N. Verdier, and M. Mallet. 2018. In situ measurements of desert dust particles above the western Mediterranean sea with the balloon-borne light optical aerosol counter/sizer (loac) during the Charmex campaign of summer 2013. Atmos. Chem. Phys. 18 (5):3677–99. doi:10.5194/acp-18-3677-2018.
  • Rudge, W. D. 1913. Atmospheric electrification during South African dust storms. Nature 91 (2263):31–2. doi:10.1038/091031a0.
  • Ryder, C. L., E. J. Highwood, P. D. Rosenberg, J. Trembath, J. K. Brooke, M. Bart, A. Dean, J. Crosier, J. Dorsey, H. Brindley, et al. 2013. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmos. Chem. Phys. 13 (1):303–25. doi:10.5194/acp-13-303-2013.
  • Ryder, C. L., E. J. Highwood, A. Walser, P. Seibert, A. Philipp, and B. Weinzierl. 2019. Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara. Atmos. Chem. Phys. 19 (24):15353–76. doi:10.5194/acp-19-15353-2019.
  • Schön, M., K. A. Nicoll, Y. G. Büchau, S. Chindea, A. Platis, and J. Bange. 2022. Fair-weather atmospheric charge measurements with a small UAS. Journal of Atmospheric and Oceanic Technology 39 (11):1799–813. doi:10.1175/JTECH-D-22-0025.1.
  • Schön, M., V. Savvakis, M. Kezoudi, A. Platis, and J. Bange. 2024. OPC-Pod: A new sensor payload to measure aerosol particles for small uncrewed aircraft systems. Journal of Atmospheric and Oceanic Technology 41 (5):499–513. doi:10.1175/JTECH-D-23-0078.1.
  • Schrod, J., D. Weber, J. Drücke, C. Keleshis, M. Pikridas, M. Ebert, B. Cvetković, S. Nickovic, E. Marinou, H. Baars, et al. 2017. Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems. Atmos. Chem. Phys. 17 (7):4817–35. doi:10.5194/acp-17-4817-2017.
  • Silva, H., F. Lopes, S. Pereira, K. Nicoll, S. Barbosa, R. Conceição, S. Neves, R. G. Harrison, and M. C. Pereira. 2016. Saharan dust electrification perceived by a triangle of atmospheric electricity stations in Southern Portugal. J. Electrostat. 84:106–20. doi:10.1016/j.elstat.2016.10.002.
  • Smirnov, A., B. Holben, I. Slutsker, E. Welton, and P. Formenti. 1998. Optical properties of Saharan dust during ACE 2. J. Geophys. Res. 103 (D21):28079–92. doi:10.1029/98JD01930.
  • Smith, H. R., Z. Ulanowski, P. H. Kaye, E. Hirst, W. Stanley, R. Kaye, A. Wieser, C. Stopford, M. Kezoudi, J. Girdwood, et al. 2019. The universal cloud and aerosol sounding system (UCASS): a low-cost miniature optical particle counter for use in dropsonde or balloon-borne sounding systems. Atmos. Meas. Tech. 12 (12):6579–99. doi:10.5194/amt-12-6579-2019.
  • Soupiona, O., A. Papayannis, P. Kokkalis, R. Foskinis, G. Sánchez Hernández, P. Ortiz-Amezcua, M. Mylonaki, C.-A. Papanikolaou, N. Papagiannopoulos, S. Samaras, et al. 2020. EARLINET observations of Saharan dust intrusions over the northern Mediterranean region (2014–2017): Properties and impact on radiative forcing. Atmos. Chem. Phys. 20 (23):15147–66. doi:10.5194/acp-20-15147-2020.
  • Stein, A., R. R. Draxler, G. D. Rolph, B. J. Stunder, M. D. Cohen, and F. Ngan. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96 (12):2059–77. doi:10.1175/BAMS-D-14-00110.1.
  • Stolzenburg, M., and T. C. Marshall. 1994. Testing models of thunderstorm charge distributions with Coulomb’s law. J. Geophys. Res. Atmos. 99 (D12):25921–32.
  • Stuut, J.-B., I. Smalley, and K. O’Hara-Dhand. 2009. Aeolian dust in Europe: African sources and European deposits. Quat. Int. 198 (1–2):234–45. doi:10.1016/j.quaint.2008.10.007.
  • Tanré, D., J. Haywood, J. Pelon, J. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. Highwood, and G. Myhre. 2003. Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan dust experiment (SHADE). J. Geophys. Res. 108 (D18). doi:10.1029/2002JD003273.
  • Tesche, M., S. Gross, A. Ansmann, D. Müller, D. Althausen, V. Freudenthaler, and M. Esselborn. 2011. Profiling of saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde. Tellus B: Chem. Phys. Meteorol. 63 (4):649–76. doi:10.1111/j.1600-0889.2011.00548.x.
  • Ulanowski, Z., J. Bailey, P. Lucas, J. Hough, and E. Hirst. 2007. Alignment of atmospheric mineral dust due to electric field. Atmos. Chem. Phys. 7 (24):6161–73. doi:10.5194/acp-7-6161-2007.
  • Ulanowski, Z., O. V. Kalashnikova, P. W. Lucas, and B. Berçot. 2008. Influence of alignment on the scattering properties atmospheric mineral dust. Proceedings of 11th Electromagnetic and Light Scattering Conference 2008, University of Hertfordshire.
  • Usoskin, I. G., and G. A. Kovaltsov. 2006. Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 111 (D21). doi:10.1029/2006JD007150.
  • Van Der Does, M., P. Knippertz, P. Zschenderlein, R. Giles Harrison, and J.-B. W. Stuut. 2018. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 4 (12):eaau2768. doi:10.1126/sciadv.aau2768.
  • Varga, G., G. Újvári, and J. Kovács. 2014. Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean basin. Aeolian Res. 15:151–60. doi:10.1016/j.aeolia.2014.06.005.
  • Williams, E., N. Nathou, E. Hicks, C. Pontikis, B. Russell, M. Miller, and M. Bartholomew. 2009. The electrification of dust-lofting gust fronts (“haboobs”) in the Sahel. Atmos. Res. 91 (2–4):292–8. doi:10.1016/j.atmosres.2008.05.017.
  • Winker, D., J. Pelon, J. Coakley, Jr, S. Ackerman, R. Charlson, P. Colarco, P. Flamant, Q. Fu, R. Hoff, C. Kittaka, et al. 2010. The CALIPSO mission: A global 3D view of aerosols and clouds. Bulletin of the American Meteorological Society 91 (9):1211–30. doi:10.1175/2010BAMS3009.1.
  • Yair, Y., S. Katz, R. Yaniv, B. Ziv, and C. Price. 2016. An electrified dust storm over the Negev Desert, Israel. Atmos. Res. 181:63–71. doi:10.1016/j.atmosres.2016.06.011.
  • Zhang, H., T.-L. Bo, and X. Zheng. 2017. Evaluation of the electrical properties of dust storms by multi-parameter observations and theoretical calculations. Earth Planet. Sci. Lett. 461:141–50. doi:10.1016/j.epsl.2017.01.001.
  • Zhang, H., and Y.-H. Zhou. 2020. Reconstructing the electrical structure of dust storms from locally observed electric field data. Nat. Commun. 11 (1):5072. doi:10.1038/s41467-020-18759-0.
  • Zhou, L., and B. A. Tinsley. 2007. Production of space charge at the boundaries of layer clouds. J. Geophys. Res. 112 (D11). doi:10.1029/2006JD007998.
  • Zhou, Y.-H., Q. Shu He, and X. Jing Zheng. 2005. Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles. Eur. Phys. J. E Soft Matter. 17 (2):181–7. doi:10.1140/epje/i2004-10138-5.
  • Zum Berge, K., M. Schoen, M. Mauz, A. Platis, B. van Kesteren, D. Leukauf, A. El Bahlouli, P. Letzgus, H. Knaus, and J. Bange. 2021. A two-day case study: Comparison of turbulence data from an unmanned aircraft system with a model chain for complex terrain. Boundary-Layer Meteorol. 180 (1):53–78. doi:10.1007/s10546-021-00608-2.