0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Real-time detection of molecular structures and metal components within airborne particles using concurrent Raman and Spark emission spectroscopy

, , ORCID Icon, , &
Received 29 Apr 2024, Accepted 20 Jun 2024, Published online: 17 Jul 2024

References

  • Aragón, C., and J. A. Aguilera. 2008. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochim. Acta, Part B 63 (9):893–916. doi: 10.1016/j.sab.2008.05.010.
  • Arnold, S. D., and D. A. Cremers. 1995. Rapid determination of metal particles on air sampling filters using laser-induced breakdown spectroscopy. Am. Ind. Hyg. Assoc. J. 56 (12):1180–6. doi: 10.1080/15428119591016197.
  • Barsan, M. E. 2007. Niosh pocket guide to chemical hazards. Cincinnati, OH: DHHS(NIOSH) Publications.
  • Bazalgette Courrèges-Lacoste, G., B. Ahlers, and F. R. Pérez. 2007. Combined raman spectrometer/laser-induced breakdown spectrometer for the next esa mission to mars. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 68 (4):1023–8. doi: 10.1016/j.saa.2007.03.026.
  • Bicchieri, M., M. Nardone, P. A. Russo, A. Sodo, M. Corsi, G. Cristoforetti, V. Palleschi, A. Salvetti, and E. Tognoni. 2001. Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-raman spectroscopy. Spectrochim. Acta, Part B 56 (6):915–22. doi: 10.1016/S0584-8547(01)00228-2.
  • Bulajic, D., M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni. 2002. A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochim. Acta, Part B 57 (2):339–53. doi: 10.1016/S0584-8547(01)00398-6.
  • Castillejo, M., M. Martín, M. Oujja, D. Silva, R. Torres, C. Domingo, J. V. García-Ramos, and S. Sánchez-Cortés. 2001. Spectroscopic analysis of pigments and binding media of polychromes by the combination of optical laser-based and vibrational techniques. Appl. Spectrosc. 55 (8):992–8. doi: 10.1366/0003702011953135.
  • Cellard, A., V. Garnier, G. Fantozzi, G. Baret, and P. Fort. 2009. Wear resistance of chromium oxide nanostructured coatings. Ceram. Int. 35 (2):913–6. doi: 10.1016/j.ceramint.2008.02.022.
  • Diwakar, P., P. Kulkarni, and M. E. Birch. 2012. New approach for near-real-time measurement of elemental composition of aerosol using laser-induced breakdown spectroscopy. Aerosol Sci. Technol. 46 (3):316–32. doi: 10.1080/02786826.2011.625059.
  • Doughty, D. C., and S. C. Hill. 2017. Automated aerosol raman spectrometer for semi-continuous sampling of atmospheric aerosol. J. Quant. Spectrosc. Radiat. Transf. 188:103–17. doi: 10.1016/j.jqsrt.2016.06.042.
  • Escudero-Sanz, I., B. Ahlers, and G. Bazalgette Courreges-Lacoste. 2008. Optical design of a combined raman–laser-induced-breakdown-spectroscopy instrument for the European space agency exomars mission. Opt. Eng. 47 (3):033001– doi: 10.1117/1.2896453.
  • Fan, Y., Y. Xue, Y. Wang, R. Liu, and S. Zhong. 2022. Combined libs and raman spectroscopy: An approach for salinity detection in the field of seawater investigation. Appl. Opt. 61 (7):1718–25. doi: 10.1364/AO.451169.
  • Farooq, Z., R. Ali, A. Ali, T. Mubeen, T. Jan, and H. Anwar. 2018. Calibration-free laser-induced plasma analysis of nanoparticle-doped material using self-absorption correction methodologies. Appl. Spectrosc. 73 (1):30–9. doi: 10.1177/0003702818789959.
  • Feng, J., Z. Wang, Z. Li, and W. Ni. 2010. Study to reduce laser-induced breakdown spectroscopy measurement uncertainty using plasma characteristic parameters. Spectrochim. Acta, Part B 65 (7):549–56. doi: 10.1016/j.sab.2010.05.004.
  • Fraser, M. E., T. Panagiotou, A. J. R. Hunter, E. B. Anderson, and K. J. Hay. 2000. Fugitive emission measurements above a hard chromium plating tank using spark-induced breakdown spectroscopy (sibs). Plat. Surf. Finish. 87:80–7. doi: 10.1007/BF02463543.
  • Garmay, A. V., K. V. Oskolok, and O. V. Monogarova. 2020. Improved accuracy of multicomponent samples analysis by x-ray fluorescence using relative intensities and scattered radiation: A review. Anal. Lett. 53 (17):2685–99. doi: 10.1080/00032719.2020.1751651.
  • Genchi, G., A. Carocci, G. Lauria, M. S. Sinicropi, and A. Catalano. 2020. Nickel: Human health and environmental toxicology. Int. J. Environ. Res. Public Health. 17 (3):679. doi: 10.3390/ijerph17030679.
  • Gomes, A. S. O., N. Yaghini, A. Martinelli, and E. Ahlberg. 2017. A micro-raman spectroscopic study of Cr(oH)3 and Cr2O3 nanoparticles obtained by the hydrothermal method. J. Raman Spectrosc. 48 (10):1256–63. doi: 10.1002/jrs.5198.
  • Han, D., D. Kim, S. Choi, and J. J. Yoh. 2017. A novel classification of polymorphs using combined libs and raman spectroscopy. Current Optics and Photonics 1:402–11. doi: 10.3807/COPP.2017.1.4.402.
  • Hoehse, M., A. Paul, I. Gornushkin, and U. Panne. 2012. Multivariate classification of pigments and inks using combined raman spectroscopy and libs. Anal. Bioanal. Chem. 402 (4):1443–50. doi: 10.1007/s00216-011-5287-6.
  • Hunter, A. J. R., S. J. Davis, L. G. Piper, K. W. Holtzclaw, and M. E. Fraser. 2000. Spark-induced breakdown spectroscopy: A new technique for monitoring heavy metals. Appl. Spectrosc. 54 (4):575–82. doi: 10.1366/0003702001949753.
  • Jehlička, J., H. G. M. Edwards, and P. Vítek. 2009. Assessment of raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for mars studies. Planet. Space Sci. 57 (5-6):606–13. doi: 10.1016/j.pss.2008.05.005.
  • Laohaudomchok, W., J. M. Cavallari, S. C. Fang, X. Lin, R. F. Herrick, D. C. Christiani, and M. Weisskopf. 2010. Assessment of occupational exposure to manganese and other metals in welding fumes by portable x-ray fluorescence spectrometer. J. Occup. Environ. Hyg. 7 (8):456–65. doi: 10.1080/15459624.2010.485262.
  • Leung, C. C., I. T. Yu, and W. Chen. 2012. Silicosis. Lancet 379 (9830):2008–18. doi: 10.1016/S0140-6736(12)60235-9.
  • Ley, H.-H. 2014. Analytical methods in plasma diagnostic by optical emission spectroscopy: A tutorial review. J. Sci. Technol. 6.
  • Li, H., L. Mazzei, C. D. Wallis, S. A. Davari, and A. S. Wexler. 2021. The performance of an inexpensive spark-induced breakdown spectroscopy instrument for near real-time analysis of toxic metal particles. Atmos. Environ. (1994)264:118666. doi: 10.1016/j.atmosenv.2021.118666.
  • MacLean, L. C., S. Beauchemin, and P. E. Rasmussen. 2011. Lead speciation in house dust from canadian urban homes using exafs, micro-xrf, and micro-xrd. Environ. Sci. Technol. 45 (13):5491–7. doi: 10.1021/es2001503.
  • Misra, A. K., S. K. Sharma, T. E. Acosta, and D. E. Bates. 2011. Compact remote raman and libs system for detection of minerals, water, ices, and atmospheric gases for planetary exploration. In Next-Generation Spectroscopic Technologies IV, 192-203: SPIE. doi: 10.1117/12.884392.
  • Montagna, M., O. De Giglio, M. Cristina, C. Napoli, C. Pacifico, A. Agodi, T. Baldovin, B. Casini, M. Coniglio, M. D’Errico, et al. 2017. Evaluation of legionella air contamination in healthcare facilities by different sampling methods: An italian multicenter study. IJERPH. 14 (7):670. doi: 10.3390/ijerph14070670.
  • Moros, J., J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna. 2010. Simultaneous raman spectroscopy − laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal. Chem. 82 (4):1389–400. doi: 10.1021/ac902470v.
  • Muhammed Shameem, K. M., A. Chawla, M. Mallya, B. K. Barik, V. K. Unnikrishnan, V. B. Kartha, and C. Santhosh. 2018. Laser-induced breakdown spectroscopy-raman: An effective complementary approach to analyze renal-calculi. J. Biophotonics. 11 (6):e201700271. doi: 10.1002/jbio.201700271.
  • Negi, G., S. Anirbid, and P. Sivakumar. 2021. Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges. Petrol. Res. 6 (3):224–46. doi: 10.1016/j.ptlrs.2021.03.001.
  • NIOSH. 2003. Niosh manual of analytical methods, in 7500 - Silica, Crystalline, by XRD (filter redeposition). Cincinnati: DHHS.
  • NIOSH. 2017a. Niosh manual of analytical methods. In 7603 - QUARTZ in Respirable Coal Mine Dust, by IR (Redeposition). Cincinnati: DHHS.
  • NIOSH. 2017b. Niosh manual of analytical methods. In 7602 - SILICA, Respirable Crystalline, by IR (KBr pellet). Cincinnati: DHHS.
  • Niu, C., Z. Hu, X. Cheng, A. Gong, K. Wang, D. Zhang, S. Li, and L. Guo. 2023. Individual micron-sized aerosol qualitative analysis-combined raman spectroscopy and laser-induced breakdown spectroscopy by optical trapping in air. Anal. Chem. 95 (5):2874–83. doi: 10.1021/acs.analchem.2c04411.
  • Oks, E. 2018. Review of recent advances in the analytical theory of stark broadening of hydrogenic spectral lines in plasmas: Applications to laboratory discharges and astrophysical objects. Atoms 6 (3):50. doi: 10.3390/atoms6030050.
  • Pan, M., J. A. Lednicky, and C. Y. Wu. 2019. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 127 (6):1596–611. doi: 10.1111/jam.14278.
  • Rakshit, S., S. Chall, S. S. Mati, A. Roychowdhury, S. Moulik, and S. C. Bhattacharya. 2013. Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis. RSC Adv. 3 (17):6106–16. doi: 10.1039/c3ra21978j.
  • Rawat, K., N. Sharma, and V. K. Singh. 2022. X-ray fluorescence and comparison with other analytical methods (aas, icp-aes, la-icp-ms, ic, libs, sem-eds, and xrd). In X-Ray Fluorescence in Biological Sciences: Principles, Instrumentation, and Applications, eds. V. K. Singh, J. Kawai, and D. K. Tripathi, 1–20. Hoboken, NJ: John Wiley & Sons Ltd. doi: 10.1002/9781119645719.ch1.
  • Sharma, S., A. Misra, P. Lucey, R. Wiens, and S. Clegg. 2007. Combined remote libs and raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 68 (4):1036–45. doi: 10.1016/j.saa.2007.06.046.
  • Shekhawat, K., S. Chatterjee, and B. Joshi. 2015. Chromium toxicity and its health hazards. Int. J. Adv. Res. 3:167–72.
  • Singh, V., and S. N. Gurulaxmi. 2022. Development of low-cost smelting reduction process using cupola furnace for efficient use of inferior grade manganese ores and rejects. Min. Metal. Explorat. 39 (3):1233–43. doi: 10.1007/s42461-022-00590-4.
  • Soltan, M.-E., A. Al-Ayed, and M. Ismail. 2022. Evaluation of the concentrations of some metallic elements in the fallen dust extractants on the ar rass city, qassim region, ksa. Int. J. Environ. Anal. Chem. 102 (18):6469–84. doi: 10.1080/03067319.2020.1811264.
  • Stacey, P., F. Clegg, J. Morton, and C. Sammon. 2020. An indirect raman spectroscopy method for the quantitative measurement of respirable crystalline silica collected on filters inside respiratory equipment. Anal. Methods 12 (21):2757–71. doi: 10.1039/D0AY00165A.
  • Sun, T., L. Ou, X. Zhan, W. Zhao, R. Huang, X. Feng, J. Liu, S. Yin, X. Liu, and R. Lai. 2020. Toxicity of zirconia oxide nanoparticles: Liver biodistribution and liver damages. Preprint (Version 1). doi: 10.21203/rs.2.22142/v1.
  • Suzuki, K. 2006. Characterisation of airborne particulates and associated trace metals deposited on tree bark by icp-oes, icp-ms, sem-edx and laser ablation icp-ms. Atmos. Environ. 40 (14):2626–34. doi: 10.1016/j.atmosenv.2005.12.022.
  • Volpato, C. Â. M., L. Garbelotto, M. C. Fredel, and F. Bondioli. 2011. Application of zirconia in dentistry: Biological, mechanical and optical considerations. Adv. Ceram. Electric Mag. Ceram. Bioceram. Ceram. Environ. 17:397–415.
  • Wang, J., X. Han, G. Guo, G. Niu, S. Wang, Y. Duan, Q. Fan, and Q. Lin. 2019. Novel combined instrumentation for laser-induced breakdown spectroscopy and raman spectroscopy for the in situ atomic and molecular analysis of minerals. Instrument. Sci. Technol. 47 (5):564–79. doi: 10.1080/10739149.2019.1608236.
  • Waterbury, R., J. Rose, D. Vunck, T. Blank, K. Pohl, A. Ford, T. McVay, and E. Dottery. 2011. Fabrication and testing of a standoff trace explosives detection system, in. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII, 347-352: SPIE. doi: 10.1117/12.885256.
  • Wei, S., B. Johnson, M. Breitenstein, L. Zheng, J. Snawder, and P. Kulkarni. 2022. Aerosol analysis using handheld raman spectrometer: On-site quantification of trace crystalline silica in workplace atmospheres. Ann. Work Expo. Health. 66 (5):656–70. doi: 10.1093/annweh/wxab076.
  • Welna, M., A. Szymczycha-Madeja, and P. Pohl. 2011. Quality of the trace element analysis: Sample preparation steps: Wide spectra of quality control. 1–16.
  • Westlake, P., P. Siozos, A. Philippidis, C. Apostolaki, B. Derham, A. Terlixi, V. Perdikatsis, R. Jones, and D. Anglos. 2012. Studying pigments on painted plaster in minoan, roman and early byzantine crete. A multi-analytical technique approach. Anal. Bioanal. Chem. 402 (4):1413–32. doi: 10.1007/s00216-011-5281-z.
  • Yang, J., W. N. Martens, and R. L. Frost. 2011. Transition of chromium oxyhydroxide nanomaterials to chromium oxide: A hot-stage raman spectroscopic study. J. Raman Spectrosc. 42:1142–6. doi: 10.1002/jrs.2773.
  • Zheng, L., and P. Kulkarni. 2019. Real-time measurement of airborne carbon nanotubes in workplace atmospheres. Anal. Chem. 91 (20):12713–23. doi: 10.1021/acs.analchem.9b02178.
  • Zheng, L., P. Kulkarni, and P. Diwakar. 2018. Spatial and temporal dynamics of a pulsed spark microplasma used for aerosol analysis. Spectrochim. Acta, Part B 144:55–62. doi: 10.1016/j.sab.2018.03.008.
  • Zheng, L., P. Kulkarni, M. E. Birch, G. Deye, and D. D. Dionysiou. 2016. Near real-time measurement of carbonaceous aerosol using microplasma spectroscopy: Application to measurement of carbon nanomaterials. Aerosol Sci. Technol. 50 (11):1155–66. doi: 10.1080/02786826.2016.1224804.
  • Zheng, L., P. Kulkarni, M. E. Birch, K. Ashley, and S. Wei. 2018. Analysis of crystalline silica aerosol using portable raman spectrometry: Feasibility of near real-time measurement. Anal. Chem. 90 (10):6229–39. doi: 10.1021/acs.analchem.8b00830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.