0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

An active-type dust collector that reduces brake wear particle (BWP) emission

, , , , , & show all
Received 02 May 2024, Accepted 18 Jul 2024, Published online: 06 Aug 2024

References

  • Chang, X., Y. Yu, and Y. X. Li. 2021. Response of antimony distribution in street dust to urban road traffic conditions. J. Environ. Manage. 296:113219. doi: 10.1016/j.jenvman.2021.113219.
  • COM. 2022. 586-Proposal for a regulation on type-approval of motor vehicles and engines and of systems, components and separate technical units intended for such vehicles, with respect to their emissions and battery durability (Euro 7). Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. Last Modified February 8, 2023. Accessed March 1, 2022. https://single-market-economy.ec.europa.eu/sectors/automotive-industry/environmental-protection/emissions-automotive-sector_en.
  • Denier van der Gon, H., J. Hulskotte, M. Jozwicka, R. Kranenburg, J. Kuenen, and A. Visschedijk. 2018. European emission inventories and projections for road transport non-exhaust emissions: Analysis of consistency and gaps in emission inventories from EU member states. In Non-exhaust emissions. An urban air quality problem for public health; impact and mitigation measures, ed. F. Amato, 101–21. Cambridge, MA: Academic Press.
  • Fang, T., S. Kapur, K. C. Edwards, H. Hagino, L. M. Wingen, V. Perraud, A. E. Thomas, B. Bliss, D. A. Herman, A. De Vizcaya Ruiz, et al. 2024. Aqueous OH radical production by brake wear particles. Environ. Sci. Technol. Lett. 11 (4):315–22. doi: 10.1021/acs.estlett.4c00066.
  • Farwick Zum Hagen, F. H., M. Mathissen, T. Grabiec, T. Hennicke, M. Rettig, J. Grochowicz, R. Vogt, and T. Benter. 2019. On-road vehicle measurements of brake wear particle emissions. Atmos. Environ. 217:116943. doi: 10.1016/j.atmosenv.2019.116943.
  • Fayzullayevich, J. V., G. Tan, F. J. Alex, Y. Wu, and P. K. Agyeman. 2022. Numerical study of factors affecting particle suction efficiency of pick-up head of a regenerative air vacuum sweeper. Processes 10 (7):1252. doi: 10.3390/pr10071252.
  • Feo, M. L., M. Torre, P. Tratzi, F. Battistelli, L. Tomassetti, F. Petracchini, E. Guerriero, and V. Paolini. 2023. Laboratory and on-road testing for brake wear particle emissions: A review. Environ. Sci. Pollut. Res. Int. 30 (45):100282–300. doi: 10.1007/s11356-023-29229-7.
  • Fuchs, N. A., R. E. Daisley, M. Fuchs, C. N. Davies, and M. E. Straumanis. 1964. The Mechanics of aerosols. Phys. Today 18 (4):73– doi: 10.1063/1.3047354.
  • GRPE-2023-4e. 2023. Clean-(PMP) proposal to amend ECE/TRANS/WP.29/GRPE/2023/4. Proposal for a new UN GTR on laboratory measurement of brake emissions for light-duty vehicles. Last Modified Octobor 1, 2023. Accessed March 1, 2022. https://unece.org/transport/documents/2023/01/informal-documents/clean-pmp-proposal-amend-ecetranswp29grpe20234.
  • Hascoët, M., and L. Adamczak. 2020. At source brake dust collection system. Results Eng 5:100083. doi: 10.1016/j.rineng.2019.100083.
  • Hesse, D., and K. Augsburg. 2019. Real driving emissions measurement of brake dust particles. SAE Int. 2019-01-2138. doi: 10.4271/2019-01-2138.
  • Hwang, I. S., and Y. L. Lee. 2021. A study on the pressure drop characteristics of a passive filter system for collecting fine brake dust. Int. J. Automot. Technol. 22 (5):1257–65. doi: 10.1007/s12239-021-0110-7.
  • Jin, Y., P. Jiabao, A. Hejin, and Z. Lujun. 2022. Relationship between flow field characteristics and dust collection efficiency of sweeper suction port. J. Eng. 2022 (4):389–400. doi: 10.1049/tje2.12122.
  • Joo, B. S., D. C. Jara, H. J. Seo, and H. Jang. 2020. Influences of the average molecular weight of phenolic resin and potassium titanate morphology on particulate emissions from brake linings. Wear 450–451:203243. doi: 10.1016/j.wear.2020.203243.
  • Keller, F., L. Krupa, A. Beck, T. Worz, B. Weller, K. Kohn, S. Pfannkuch, T. Jessberger, and M. Lehmann. 2021. Development of a modelling approach to numerically predict filtration efficiencies of brake dust particle filter. SAE Int. 2021-01-1285. doi: 10.4271/2021-01-1285.
  • Keller, F., T. Worz, A. Beck, M. Kopriva, M. Uhlir, and S. Pfannkuch. 2023. Development of an active brake dust particle filter system to reduce brake dust emissions. Paper presented at the FISITA: EuroBrake 2023. Barcelona, Spain, September 13.
  • Kim, Y. J., B. Han, C. G. Woo, and H. J. Kim. 2017. Performance of ultrafine particle collection of a two-stage ESP using a novel mixing type carbon brush charger and parallel collection plates. IEEE Trans. Ind. Appl. 53 (1):466–73. doi: 10.1109/TIA.2016.2606366.
  • Kim, S., K. Park, C. Choi, M. Y. Ha, and D. Lee. 2022. Removal of ultrafine particles in a full-scale two-stage electrostatic precipitator employing a carbon-brush ionizer for residential use. Build. Environ. 223:109493. doi: 10.1016/j.buildenv.2022.109493.
  • Kwak, J., H. Kim, J. Lee, and S. Lee. 2013. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements. Sci. Total Environ. 458–460:273–82. doi: 10.1016/j.scitotenv.2013.04.040.
  • Lu, X., Z. Wang, Y. Chen, Y. Yang, X. Fan, L. Wang, B. Yu, K. Lei, L. Zuo, P. Fan, et al. 2023. Source- specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation. J. Environ. Manage. 347:119056. doi: 10.1016/j.jenvman.2023.119056.
  • MANN + HUMMEL Group. 2020. Brake Dust Particle Filter. Last modified February 24, 2020. Accessed April 22, 2024. https://oem.mann-hummel.com/en/oem-products/fine-dust-filters/brake-dust-particle-filter.html.
  • Mathissen, M., V. Scheer, R. Vogt, and T. Benter. 2011. Investigation on the potential generation of ultrafine particles from the tire-road interface. Atmos. Environ. 45 (34):6172–9. doi: 10.1016/j.atmosenv.2011.08.032.
  • Mathissen, M., J. Grochowicz, C. Schmidt, R. Vogt, F. H. Farwick Zum Hagen, T. Grabiec, H. Steven, and T. Grigoratos. 2018. A novel real-world braking cycle for studying brake wear particle emissions. Wear 414–415:219–26. doi: 10.1016/j.wear.2018.07.020.
  • Monks, P., J. Allan, D. Carruthers, and G. Fuller. 2019. Non-exhaust emissions from road traffic. Department for Environment Food and Rural Affairs; Scottish Government; Welsh Government; and Department of the Environment in Northern Ireland, Air Quality Expert Group8-75, Accessed July 9, 2019. https://uk-air.defra.gov.uk/
  • Sinha, A., G. Ischia, C. Menapace, and S. Gialanella. 2020. Experimental Characterization protocols for wear products from disc brake materials. Atmosphere 11 (10):1102. doi: 10.3390/atmos11101102.
  • Shi, X., D. Wen, S. Wang, G. Wang, M. Zhang, J. Li, and C. Xue. 2021. Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc. Optik 242:167227. doi: 10.1016/j.ijleo.2021.167227.
  • Tsai, C. J., and D. Y. H. Pui. 1990. Numerical study of particle deposition in bends of a circular cross-section-laminar flow regime. Aerosol Sci. Technol. 12 (4):813–31. doi: 10.1080/02786829008959395.
  • Woo, S. H., Y. Kim, S. Lee, Y. Choi, and S. Lee. 2021. Characteristics of brake wear particle (BWP) emissions under various test driving cycles. Wear 480–481:203936. doi: 10.1016/j.wear.2021.203936.
  • Woo, S. H., G. Lee, B. Han, and S. Lee. 2022a. Development of dust collectors to reduce brake wear PM emissions. Atmosphere 13 (7):1121. doi: 10.3390/atmos13071121.
  • Woo, S. H., H. Jang, M. Y. Na, H. J. Chang, and S. Lee. 2022b. Characterization of brake particles emitted from non-asbestos organic and low-metallic brake pads under normal and harsh braking conditions. Atmos. Environ. 278:119089. doi: 10.1016/j.atmosenv.2022.119089.
  • Xi, Y., Y. Dai, X. Zhang, and X. Zhang. 2020. Prediction of particle-collection efficiency for vacuum-blowing cleaning system based on operational conditions. Processes 8 (7):809. doi: 10.3390/pr8070809.
  • Yang, Y., L. X. Liang, H. Wu, B. Liu, H. Qu, and Q. Fang. 2020. Effect of zinc powder content on tribological behaviors of brake friction materials. Trans. Nonferrous Met. Soc. China 30 (11):3078–92. doi: 10.1016/S1003-6326(20)65444-9.
  • Zhao, J., N. Lewinski, and M. Riediker. 2015. Physico-chemical characterization and oxidative reactivity evaluation of aged brake wear particles. Aerosol Sci. Technol. 49 (2):65–74. doi: 10.1080/02786826.2014.998363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.