461
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

A fine-scale model for area-based predictions of tree-size-related attributes derived from LiDAR canopy heights

, , &
Pages 312-322 | Received 15 Apr 2011, Accepted 13 Sep 2011, Published online: 26 Oct 2011

References

  • Aldred , A. H. & Bonnor , G. M. 1985 . Application of airborne lasers to forest surveys . Information Report – Petawawa , p. 62 , Canada : National Forestry Institute .
  • Axelsson , P. 2000 . DEM generation from laser scanner data using adaptive TIN models . Photogrammetric and Remote Sensing Archives. 33 Part B4/1 Part 4, p 110–117 .
  • Braastad , H. 1966 . Volume tables for birch (in Norwegian with English summary) . Meddelser Norske Skogforsøgsvesen , 21 , 265 – 365 .
  • Brantseg , A. 1967 . Volume functions and tables for Scots pine in southern Norway (in Norwegian with English summary) . Meddelser Norske Skogforsøgsvesen , 22 , 695 – 739 .
  • Breusch , T. S. and Pagan , A. R. 1979 . A simple test for heteroscedasticity and random coefficient variation . Econometrica , 47 : 1287 – 1294 .
  • Chasmer , L. , Hopkinson , C. and Treitz , P. 2003 . “ Vertical laser pulse return frequency distributions within tree canopies using airborne and ground-based LiDAR systems ” . In Forest research information paper-Ontario Forest Research Institute , Edited by: Buse , L. J. and Perera , A. H. 155 – 158 . Sault Ste Marie : Ontario Forest Research Institute .
  • Chasmer , L. , Hopkinson , C. and Treitz , P. 2006 . Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar . Canadian Journal of Remote Sensing , 32 ( 2 ) : 116 – 125 .
  • Curtis , R. O . & Marshall , D. D . 2000 . Why quadratic mean diameter? Western Journal of Applied Forestry , 15 (3) , 137–139 .
  • D'Agostino , R. B. 1990 . A suggestion for using powerful and informative tests of normality . The American Statistician , 44 ( 4 ) : 316 – 321 .
  • Davidian , M. and Carroll , R. J. 1987 . Variance function estimation . Journal of the American Statistical Association , 82 : 1079 – 1091 .
  • Disney , M. I. , Kalogirou , V. , Lewis , P. , Prieto-Blanco , A. , Hancock , S. and Pfeifer , M. 2010 . Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests . Remote Sensing of Environment , 114 ( 7 ) : 1546 – 1560 .
  • Drake , J. B. and Weisham , J. F. 2000 . Multifractal analysis of canopy height measures in longleaf pine savanna . Forest Ecology and Management , 128 : 121 – 127 .
  • Falkowski , M. J. , Evans , J. S. , Martinuzzi , S. , Gessler , P. E. and Hudak , A. T. 2009 . Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA . Remote Sensing of Environment , 113 ( 5 ) : 946 – 956 .
  • Ferster , C. J. , Coops , N. C. and Trofymow , J. A. 2009 . Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from lidar . Canadian Journal of Remote Sensing , 35 ( 3 ) : 270 – 275 .
  • Frazer , G. W. , Magnussen , S. , Wulder , M. A. and Niemann , K. O. 2010 . Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass . Remote Sensing of Environment , 115 ( 2 ) : 639 – 649 .
  • Gallant , A. R. 1987 . Nonlinear statistical methods , New York : Wiley .
  • Gaveau , D. L. A. and Hill , R. A. 2003 . Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data . Canadian Journal of Remote Sensing , 29 ( 5 ) : 650 – 657 .
  • Gobakken , T. and Næsset , E. 2008 . Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data . Canadian Journal of Forest Resarch , 38 ( 5 ) : 1095 – 1109 .
  • Gobakken , T. and Næsset , E. 2009 . Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data . Canadian Journal of Forest Resarch , 39 : 1036 – 1052 .
  • Gonzales , R. C. and Woods , R. E. 1992 . Digital image processing , Reading , MS : Addison-Wesley .
  • Gregoire , T. G. 1987 . Generalized error structure for forestry yield models . Forest Science , 33 : 423 – 444 .
  • Hall , S. A. , Burke , I. C. , Box , D. O. , Kaufmann , M. R. and Stoker , J. M. 2005 . Estimating stand structure using discrete-return lidar: An example from low density, fire prone ponderosa pine forests . Forest Ecology and Management , 208 ( 1–3 ) : 189 – 209 .
  • Hammersley , J. M. & Handscomb , D. C. 1964 . Monte Carlo methods . London (Halsted, NY): Methuen .
  • Hollaus , M. , Wagner , W. , Schadauer , K. , Maier , B. and Gabler , K. 2009 . Growing stock estimation for alpine forests in Austria: A robust lidar-based approach . Canadian Journal of Forest Research , 39 : 1387 – 1400 .
  • Holmgren , J. 2004 . Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning . Scandinavian Journal of Forest Research , 19 ( 6 ) : 543 – 553 .
  • Holmgren , J. , Nilsson , M. and Olsson , H. 2003a . Estimation of tree height and stem volume on plots-using airborne laser scanning . Forest Science , 49 ( 3 ) : 419 – 428 .
  • Holmgren , J. , Nilsson , M. and Olsson , H. 2003b . Simulating the effects of lidar scanning angle for estimation of mean tree height and canopy closure . Canadian Journal of Remote Sensing , 29 ( 5 ) : 623 – 632 .
  • Hopkinson , C. , Chasmer , L. , Lim , K. , Treitz , P. and Creed , I. 2006 . Towards a universal lidar canopy height indicator . Canadian Journal of Remote Sensing , 32 ( 2 ) : 139 – 152 .
  • Hudak , A. T. , Crookston , N. L. , Evans , J. S. , Falkowski , M. J. , Smith , A. F. M. Gessler , P. E. 2006 . Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data . Canadian Journal of Remote Sensing , 32 ( 2 ) : 126 – 138 .
  • Hudak , A. T. , Crookston , N. L. , Evans , J. S. , Hall , D. E. and Falkowski , M. J. 2008 . Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data . Remote Sensing of Environment , 112 ( 5 ) : 2232 – 2245 .
  • Jaskierniak , D. , Lane , P. N. J. , Robinson , A. & Lucieer , A. 2010 . Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions . Remote Sensing of Environment , 115(2), 573–585 .
  • Kato , A. , Moskal , L. M. , Schiess , P. , Swanson , M. E. , Calhuon , D. and Stuetzle , W. 2009 . Capturing tree crown information through implicit surface reconstruction using airborne lidar data . Remote Sensing of Environment , 113 : 1148 – 1162 .
  • Khan , J. A. , Van Aelst , S. and Zamar , R. H. 2007 . Robust linear model selection based on least angle regression . Journal of the American Statistical Association , 102 ( 480 ) : 1289 – 1299 .
  • Lang'at , J. K. S. , Bosire , J. O. , Karachi , M. & Kairo , J. G. 2009 . Allometric models for estimating standing volume of a replanted mangrove plantation in Kenya . In : M. N. Muchiri , B. Kamondo , D. Ochieng , P. Tuwei & J. Wanjiku Recent advances in forestry research for environmental conservation, improved livelihood and economic development . Proceedings of the 4th KEFRI Scientific Conference, KEFRI Headquarters, Muguga, Kenya, October 6–9 , Nairobi : Kenya Forestry Research Institute .
  • Leeuwen , M. V. and Nieuwenhuis , M. 2010 . Retrieval of forest structural parameters using LiDAR remote sensing . European Journal of Forest Research , 129 ( 4 ) : 749 – 770 .
  • Lefsky , M. A. , Hudak , A. T. , Cohen , W. B. and Acker , S. A. 2005 . Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest . Remote Sensing of Environment , 95 ( 4 ) : 532 – 548 .
  • Lim , K. , Treitz , P. , Baldwin , K. , Morrison , I. and Green , J. 2003 . Lidar remote sensing of biophysical properties of tolerant northern hardwood forests . Canadian Journal of Remote Sensing , 29 ( 5 ) : 658 – 678 .
  • Lindstrom , M. J. and Bates , D. M. 1988 . Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data . Journal of the American Statistical Association , 83 : 1014 – 1022 .
  • Lucas , R. , Lee , A. , Armston , J. , Breyer , J. , Bunting , P. & Carreiras , J. 2008 . Advances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets . In : R. Hill , J. Rosette & J. Suárez Proceedings of SilviLaser 2008, 8th International Conference on LiDAR Applications in Forest Assessment and Inventory , September 17–19 , Edinburgh : Heriot-Watt University,. Bournemouth: SilviLaser 2008 Organizing Committee .
  • Magnussen , S. , Næsset , E. and Gobakken , T. 2010 . Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce . Remote Sensing of Environment , 114 : 700 – 712 .
  • Magnusson , M. , Fransson , J. E. S. and Holmgren , J. 2007 . Effects on estimation accuracy of forest variables using different pulse density of laser data . Forest Science , 53 ( 6 ) : 619 – 626 .
  • Maltamo , M. , Hyyppa , J. and Malinen , J. 2006 . A comparative study of the use of laser scanner data and field measurements in the prediction of crown height in boreal forests . Scandinavian Journal of Forest Research , 21 ( 3 ) : 231 – 238 .
  • Maltamo , M. , Packalén , P. , Suvanto , A. , Korhonen , K. T. , Mehtätalo , L. and Hyvönen , P. 2009 . Combining ALS and NFI training data for forest management planning: A case study in Kuortane, Western Finland . European Journal of Forest Research , 128 ( 3 ) : 305 – 317 .
  • Maltamo , M. , Suvanto , A. and Packalén , P. 2007 . Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation . Forest Ecology and Management , 247 ( 1–3 ) : 26 – 34 .
  • Miura , N. and Jones , S. D. 2010 . Characterizing forest ecological structure using pulse types and heights of airborne laser scanning . Remote Sensing of Environment , 114 ( 5 ) : 1069 – 1076 .
  • Mohammed , A. and Al-Amin , M. 2008 . Allometric models to estimate biomass organic carbon stock in forest vegetation . Journal of Forest Research , 19 : 101 – 106 .
  • Morsdorf , F. , Frey , O. , Meier , E. , Itten , K. I. and Allgower , B. 2008 . Assessment of the influence of flying altitude and scan angle on biophysical vegetation products derived from airborne laser scanning . International Journal of Remote Sensing , 29 ( 5 ) : 1387 – 1406 .
  • Næsset , E. 1997 . Estimating timber volume of forest stands using airborne laser scanner data . Remote Sensing of Environment , 61 ( 2 ), 246 – 253 . doi: 10.1016/s0034-4257(97)00041-2
  • Næsset , E. 2004a . Accuracy of forest inventory using airborne laser scanning: Evaluating the first Nordic full-scale operational project . Scandinavian Journal of Forest Research , 19 ( 6 ) : 554 – 557 .
  • Næsset , E. 2004b . Effects of different flying altitudes on biophysical stand properties estimated from canopy height and density measured with a small-footprint airborne scanning laser . Remote Sensing of Environment , 91 ( 2 ) : 243 – 255 .
  • Næsset , E. 2004c . Practical large-scale forest stand inventory using a small-footprint airborne scanning laser . Scandinavian Journal of Forest Research , 19 ( 2 ) : 164 – 179 .
  • Næsset , E. 2005 . Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data . Remote Sensing of Environment , 98 ( 2–3 ) : 356 – 370 .
  • Næsset , E. 2007 . Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia . Scandinavian Journal of Forest Research , 22 ( 5 ) : 433 – 442 .
  • Næsset , E. 2009 . Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data . Remote Sensing of Environment , 113 ( 1 ), 148 – 159 . doi: 10.1016/j.rse.2008.09.001
  • Næsset , E. and Gobakken , T. 2005 . Estimating forest growth using canopy metrics derived from airborne laser scanner data . Remote Sensing of Environment , 96 ( 3–4 ) : 453 – 465 .
  • Næsset , E. and Gobakken , T. 2008 . Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser . Remote Sensing of Environment , 112 ( 6 ) : 3079 – 3090 .
  • Návar , J. 2009 . Allometric equations for tree species and carbon stocks for forests of northwestern Mexico . Forest Ecology and Management , 257 ( 2 ) : 427 – 434 .
  • Nelson , R. , Krabill , W. and Maclean , G. 1984 . Determining forest canopy characteristics using airborne laser data . Remote Sensing of Environment , 15 : 202 – 212 .
  • Nilsson , M. 1996 . Estimation of tree heights and stand volume using an airborne lidar system . Remote Sensing of Environment , 56 : 1 – 7 .
  • Peuhkurinen , J. , Maltamo , M. , Malinen , J. , Pitkanen , J. and Packalen , P. 2007 . Preharvest measurement of marked stands using airborne laser scanning . Forest Science , 53 ( 6 ) : 653 – 661 .
  • Pokorný , R. and Tomášsková , I. 2007 . Allometric relationships for surface area and dry mass of young Norway spruce aboveground organs . Journal of Forest Science , 53 ( 12 ) : 548 – 554 .
  • Popescu , S. C. , Wynne , R. H. and Nelson , R. F. 2002 . Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size . Computers and Electronics in Agriculture , 37 ( 1–3 ) : 71 – 95 .
  • Ramsey , J. B. 1969 . Tests for specification errors in classical linear least squares regression analysis. Journal Royal Statistical Society . Series B , 31 : 350 – 371 .
  • Rombouts , J. , Ferguson , T. S. & Leech , J. 2009 . Campaign and site effects in LiDAR prediction models for site quality assessment of radiata pine plantations in south Australia . International Journal of Remote Sensing , (in press) .
  • Segura , M. and Kanninen , M. 2005 . Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica . Biotropica , 37 ( 1 ) : 2 – 8 .
  • Suratno , A. , Seielstad , C. & Queen , L. 2009 . Tree species identification in mixed coniferous forest using airborne laser scanning . ISPRS Journal of Photogrammetry and Remote Sensing , 64(6), 683–693 .
  • Suvanto , A. and Maltamo , M. 2010 . Using mixed estimation for combining airborne laser scanning data in two different forest areas . Silva Fennica , 44 ( 1 ) : 91 – 107 .
  • van Leeuwen , M. & Nieuwenhuis , M. 2010 . Retrieval of forest structural parameters using LiDAR remote sensing . European Journal of Forest Research , 129 ( 4 ), 749 – 770 . doi: 10.1007/s10342-010-0381-4 .
  • Vauhkonen , J. , Tokola , T. , Maltamo , M. & Packalén , P. 2009 . Applied 3D texture features in ALS-based forest inventory . European Journal of Forest Research , 129 (5), 803–811 .
  • Vestjordet , E. 1967 . Functions and tables for volume of standing trees. Norway spruce (in Norwegian with English summary) . Meddelser Norske Skogforsøgsvesen , 22 , 543 – 574 .
  • Wynne , R. H. 2006 . Lidar remote sensing of forest resources at the scale of management. PE&RS . Photogrammetric Engineering & Remote Sensing , 72 ( 12 ) : 1310 – 1314 .
  • Yu , X. , Hyyppä , J. , Kaartinen , H. and Maltamo , M. 2004a . Automatic detection of harvested trees and determination of forest growth using airborne laser scanning . Remote Sensing of Environment , 90 ( 4 ) : 451 – 462 .
  • Yu , X. W. , Hyyppa , J. , Kaartinen , H. and Maltamo , M. 2004b . Automatic detection of harvested trees and determination of forest growth using airborne laser scanning . Remote Sensing of Environment , 90 ( 4 ) : 451 – 462 .
  • Zhao , K. , Popescu , S. and Nelson , R. 2009 . Lidar remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers . Remote Sensing of Environment , 113 ( 1 ) : 182 – 196 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.