938
Views
65
CrossRef citations to date
0
Altmetric
Research Articles

Assessing 3D point clouds from aerial photographs for species-specific forest inventories

, , &
Pages 68-79 | Received 04 Dec 2015, Accepted 01 May 2016, Published online: 21 May 2016

References

  • Agisoft LLC. 2014. Agisoft photoscan user manual. St. Petersburg. Available from: http://www.agisoft.com/pdf/photoscan-pro_1_1_en.pdf
  • Bohlin J, Olsson H, Olofsson K, Wallerman J. 2006. Tree species discrimination by aid of template matching applied to digital air photos. In: International workshop on 3D remote sensing in forestry; Vienna: BOKU. Available from http://www.rali.boku.ac.at/fileadmin/data/H03000/H85000/H85700/workshops/3drsforestry/presentations/7.4-olsson.pdf
  • Bohlin J, Wallerman J, Fransson JES. 2012a. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand J For Res. 27:692–699. doi: 10.1080/02827581.2012.686625
  • Bohlin J, Wallerman J, Fransson JES. 2012b. Species-specific forest variable estimation using non-parametric modelling of multi-spectral photogrammetric point cloud data. In: International archives of the photogrammetry, XXII ISPRS Congress; Melbourne. Available from: http://pub.epsilon.slu.se/10635/8/bohlin_et_al_130710.pdf
  • Braastad H. 1966. Volume tables for birch. Meddr norske SkogforsVes. 21:23–78. Norwegian with English summary.
  • Brantseg A. 1967. Volume functions and tables for scots pine. South Norway. Meddr norske SkogforsVes. 22:689–739 . Norwegian with English summary.
  • Dalponte M, Ørka HO, Ene LT, Gobakken T, Næsset E. 2014. Tree crown delineation and tree species classification in boreal forests using Hyperspectral and ALS Data. Remote Sens Environ. 140:306–317. doi: 10.1016/j.rse.2013.09.006
  • Dalponte M, Orka HO, Gobakken T, Gianelle D, Næsset E. 2013. Tree species classification in boreal forests with hyperspectral data. IEEE Trans Geosci Remote Sens. 51:2632–2645. doi: 10.1109/TGRS.2012.2216272
  • Donoghue D, Watt P, Cox N, Wilson J . 2007. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens Environ. 110:509–522. doi: 10.1016/j.rse.2007.02.032
  • Eid T, Næsset E. 1998. Determination of stand volume in practical forest inventories based on field measurements and photo-interpretation: the Norwegian experience. Scand J For Res. 13:246–254. doi: 10.1080/02827589809382982
  • Erikson M. 2004. Species classification of individually segmented tree crowns in high-resolution aerial images using radiometric and morphologic image measures. Remote Sens Environ. 91:469–477. doi: 10.1016/j.rse.2004.04.006
  • Fitje A, Vestjordet E. 1977. Stand height curves and new tariff tables for Norway spruce. Meddr norske SkogforsVes. 34:23–62. Norwegian with English summary.
  • Franklin SE, Hall RJ, Moskal LM, Maudie AJ, Lavigne MB. 2000. Incorporating texture into classification of forest species composition from airborne multispectral images. Int J Remote Sens. 21:61–79. doi: 10.1080/014311600210993
  • Gobakken T, Bollandsås OM, Næsset E. 2014. Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scand J For Res. 30:1–37.
  • Gobakken T, Næsset E. 2008. Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can J For Res. 38:1095–1109. doi: 10.1139/X07-219
  • Haara A, Haarala M. 2002. Tree species classification using semi-automatic delineation of trees on aerial images. Scand J For Res. 17:556–565. doi: 10.1080/02827580260417215
  • Hansen EH, Gobakken T, Bollandsås OM, Zahabu E, Næsset E. 2015. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sens. 7:788–807. doi: 10.3390/rs70100788
  • Haralick RM, Shanmugam K, Dinstein IH. 1973. Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3. 6:610–621. doi: 10.1109/TSMC.1973.4309314
  • Henningsen A, Toomet O. 2011. Maxlik: a package for maximum likelihood estimation in R. Comput Stat. 26:443–458. doi: 10.1007/s00180-010-0217-1
  • Hijazi RH, Jernigan RW. 2007. Modelling compositional data using Dirichlet regression models. J Appl Probab Stat. 4:77–91.
  • Holmgren J, Persson Å, Söderman U. 2008. Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int J Remote Sens. 29:1537–1552. doi: 10.1080/01431160701736471
  • Honkavaara E, Arbiol R, Markelin L, Martinez L, Cramer M, Bovet S, Chandelier L, Ilves R, Klonus S, Marshal P, et al. 2009. Digital airborne photogrammetry—a new tool for quantitative remote sensing? A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sens. 1:577. doi: 10.3390/rs1030577
  • Järnstedt J, Pekkarinen A, Tuominen S, Ginzler C, Holopainen M, Viitala R. 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS J Photogramm Remote Sens. 74:78–84. doi: 10.1016/j.isprsjprs.2012.08.006
  • Korhonen L, Korhonen KT, Stenberg P, Maltamo M, Rautiainen M. 2007. Local models for forest canopy cover with beta regression. Silva Fenn. 41:671–685. doi: 10.14214/sf.275
  • Korpela I, Heikkinen V, Honkavaara E, Rohrbach F, Tokola T. 2011. Variation and directional anisotropy of reflectance at the crown scale—implications for tree species classification in digital aerial images. Remote Sens Environ. 115:2062–2074. doi: 10.1016/j.rse.2011.04.008
  • Korpela I, Mehtätalo L, Markelin L, Seppänen A, Kangas A. 2014. Tree species identification in aerial image data using directional reflectance signatures. Silva Fenn. 48:1087. doi: 10.14214/sf.1087
  • Leckie D, Gougeon F, Hill D, Quinn R, Armstrong L, Shreenan R. 2003. Combined high-density LiDAR and multispectral imagery for individual tree crown analysis. Can J Remote Sens. 29:633–649. doi: 10.5589/m03-024
  • Lumley T, Miller A. 2009. Leaps: regression subset selection. Available from: http://cran.r-project.org/web/packages/leaps/leaps.pdf
  • Maier MJ. 2014. Dirichletreg : Dirichlet regression for compositional data in R Dirichletreg: Dirichlet regression for compositional data in R. Version 0.4.0; Vienna: WU Vienna University of Economics and Business, Department of Statistics and Mathematics.
  • Maltamo M, Næsset E, Vauhkonen J. 2014a. Forestry applications of airborne laser scanning. Springer.
  • Maltamo M, Ørka HO, Bollandsås OM, Gobakken T, Næsset E. 2014b. Using pre-classification to improve the accuracy of species-specific forest attribute estimates from airborne laser scanner data and aerial images. Scand J For Res. 30:1–22. doi: 10.1080/02827581.2014.986520
  • Maltamo M, Packalén P, Kangas J, Uuttera J, Heikkila J. 2011. Airborne laser scanning based stand level management inventory in Finland. In: Proceedings of SilviLaser 2011, 11th International Conference on LiDAR Applications for Assessing (pp. 16–19). University of Tasmania.
  • Mikhail EM, Bethel JS, McGlone JC. 2001. Introduction to modern photogrammetry. New York, NY: Wiley.
  • Miller RG. 1981. Simultaneous statistical inference. (2nd ed.). New York, NY: Springer-Verlag.
  • Mora B, Wulder MA, White JC. 2010. Identifying leading species using tree crown metrics derived from very high spatial resolution imagery in a boreal forest environment. Can J Remote Sens. 36:332–344. doi: 10.5589/m10-052
  • Nilsson M. 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens Environ. 56:1–7. doi: 10.1016/0034-4257(95)00224-3
  • Niska H, Skön J-P, Packalén P, Tokola T, Maltamo M, Kolehmainen M. 2010. Neural networks for the prediction of species-specific plot volumes using airborne laser scanning and aerial photographs. IEEE Trans Geosci Remote Sens. 48:1076–1085. doi: 10.1109/TGRS.2009.2029864
  • Nurminen K, Karjalainen M, Yu X, Hyyppä J, Honkavaara E. 2013. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS J Photogramm Remote Sens. 83:104–115. doi: 10.1016/j.isprsjprs.2013.06.005
  • Næsset E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ. 80:88–99. doi: 10.1016/S0034-4257(01)00290-5
  • Næsset E. 2004a. Accuracy of forest inventory using airborne laser scanning: evaluating the first Nordic full-scale operational project. Scand J For Res. 19:554–557. doi: 10.1080/02827580410019544
  • Næsset E. 2004b. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res. 19:164–179. doi: 10.1080/02827580310019257
  • Næsset E. 2005. Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ. 98:356–370. doi: 10.1016/j.rse.2005.07.012
  • Næsset E. 2014. Area-based inventory in Norway – from innovation to operational reality. In: Maltamo M, Næsset E, Vauhkonen J, editors. Forestry applications of airborne laser scanning. Dordrecht: Springer. p. 215–240.
  • Ørka HO, Dalponte M, Gobakken T, Næsset E, Ene LT. 2013. Characterizing forest species composition using multiple remote sensing data sources and inventory approaches. Scand J For Res. 28:677–688. doi: 10.1080/02827581.2013.793386
  • Ørka HO, Gobakken T, Næsset E, Ene L, Lien V. 2012. Simultaneously acquired airborne laser scanning and multispectral imagery for individual tree species identification. Can J Remote Sens. 38:125–138. doi: 10.5589/m12-021
  • Ørka HO, Næsset E, Bollandsås OM. 2010. Effects of different sensors and leaf-on and leaf-off canopy conditions on echo distributions and individual tree properties derived from airborne laser scanning. Remote Sens Environ. 114:1445–1461. doi: 10.1016/j.rse.2010.01.024
  • Packalén P, Maltamo M. 2007. The k-msn method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Environ. 109:328–341. doi: 10.1016/j.rse.2007.01.005
  • Packalén P, Suvanto A, Maltamo M. 2009. A two stage method to estimate species-specific growing stock. Photogramm Eng Remote Sens. 75:1451–1460. doi: 10.14358/PERS.75.12.1451
  • Puliti S, Ørka HO, Gobakken T, Næsset E. 2015. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 7:9632. doi: 10.3390/rs70809632
  • Rahlf J, Breidenbach J, Solberg S, Næsset E, Astrup R. 2014. Comparison of four types of 3d data for timber volume estimation. Remote Sens Environ. 155:325–333. doi: 10.1016/j.rse.2014.08.036
  • R Core Team. 2015. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available from: http://www.R-project.org
  • Smithson M, Verkuilen J. 2006. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods. 11:54–71. doi: 10.1037/1082-989X.11.1.54
  • Snowdon P. 1991. A ratio estimator for bias correction in logarithmic regressions. Can J For Res. 21:720–724. doi: 10.1139/x91-101
  • Statistics Norway. 2016. Commercial roundwood removals, Q1 2016, preliminary figures; cited [2016 Apr 20 ]. Available from: http://www.ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/skogav/kvartal
  • Straub C, Stepper C, Seitz R, Waser LT. 2013. Potential of ultracamx stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Can J For Res. 43:731–741. doi: 10.1139/cjfr-2013-0125
  • Terrasolid. 2012. Terrascan user’s guide, Terrasolid Ltd., Helsinki. Available from: https://www.terrasolid.com/download/tscan.pdf
  • Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppa J, Hyyppa H. 2013. Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Can J Remote Sens. 39:382–395.
  • Vauhkonen J, Ørka HO, Holmgren J, Dalponte M, Koch B. 2014. Tree species recognition based on airborne laser scanning and complementary data sources. In: Maltamo M, Næsset E, Vauhkonen J, editors. Forestry applications of airborne laser scanning – concepts and case studies. Dordrecht: Springer. p. 135–156.
  • Vestjordet E. 1967. Functions and tables for volume of standing trees. Norway Spruce. Meddr norske SkogforsVes. 22:539–574. Norwegian with English summary.
  • Vestjordet E. 1968. Volum Av Nyttbart Virke Hos Gran Og Furu Basert På Relativ Høyde Og Diameter I Brysthøyde Eller Ved 2,5 M Fra Stubbeavskjær [Merchantable volume of Norway spruce and scots pine based on relative height and diameter at breast height or 2.5 M above stump level]. Meddr norske SkogforsVes. 25:411–459. Norwegian with English summary.
  • Vihervaara P, Mononen L, Auvinen A-P, Virkkala R, Lü Y, Pippuri I, Packalen P, Valbuena R. 2015. How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landsc Ecol. 30:501–516. doi: 10.1007/s10980-014-0137-5
  • Warner TA, McGraw JB, Landenberger R. 2006. Segmentation and classification of high resolution imagery for mapping individual species in a closed canopy, deciduous forest. Sci China Ser E. 49:128–139. doi: 10.1007/s11431-006-8114-0
  • Waser LT, Ginzler C, Kuechler M, Baltsavias E, Hurni L. 2011. Semi-automatic classification of tree species in different forest ecosystems by spectral and geometric variables derived from airborne digital sensor (Ads40) and Rc30 data. Remote Sens Environ. 115:76–85. doi: 10.1016/j.rse.2010.08.006
  • Wing BM, Ritchie MW, Boston K, Cohen WB, Gitelman A, Olsen MJ. 2012. Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sens Environ. 124:730–741. doi: 10.1016/j.rse.2012.06.024
  • Wu C. 2004. Normalized spectral mixture analysis for monitoring urban composition using etm+imagery. Remote Sens Environ. 93:480–492. doi: 10.1016/j.rse.2004.08.003
  • Yu B, Member S, Ostland IM, Gong P, Pu R. 1999. Penalized discriminant analysis of in situ hyperspectral data for conifer species recognition. IEEE Trans Geosci Remote Sens. 35:2569–2577. doi: 10.1109/36.789651
  • Zvoleff A. 2015. Package ‘GLCM’. version 1.2. Available from: http://cran.r-project.org/web/packages/glcm/glcm.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.