309
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Using canopy heights from digital aerial photogrammetry to enable spatial transfer of forest attribute models: a case study in central Europe

, , ORCID Icon &
Pages 748-761 | Received 21 Apr 2016, Accepted 13 Nov 2016, Published online: 05 Dec 2016

References

  • Baccini A, Friedl MA, Woodcock CE, Warbington R. 2004. Forest biomass estimation over regional scales using multisource data. Geophys Res Lett. 31. doi:10.1029/2004GL019782.
  • Bohlin J, Wallerman J, Fransson JE. 2012. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand J For Res. 27:692–699. doi:10.1080/02827581.2012.686625.
  • Bohlin J, Wallerman J, Fransson JE. 2015. Deciduous forest mapping using change detection of multi-temporal canopy height models from aerial images acquired at leaf-on and leaf-off conditions. Scand J For Res:1–27. doi:10.1080/02827581.2015.1130850.
  • Borchert H. 2007. Veränderungen des Waldes in Bayern in den letzen 100 Jahren [Changes of the Bavarian forests in the last 100 years]. LWF Wissen. [Internet]. [cited 2016 Mar 25]:42–49. Available from: http://www.lwf.bayern.de/mam/cms04/service/dateien/w58-veraenderung-des-waldes-in-bayern-in-den-letzten-100-jahren.pdf.
  • Breiman L. 2001. Random forests. Mach Learn. 45:5–32. doi: 10.1023/A:1010933404324
  • Carson WW, Miller SB, Walker AS. 1996. Automated forest inventory using a digital photogrammetric workstation. Proceedings of the second international airborne remote sensing conference and exhibition:251–257.
  • van Ewijk K, Treitz PM, Scott NA. 2011. Characterizing forest succession in central Ontario using LiDAR-derived indices. Photogramm Eng Remote Sens. 77:261–269. doi:10.14358/PERS.77.3.261.
  • Fekety PA, Falkowski MJ, Hudak AT. 2015. Temporal transferability of LiDAR-based imputation of forest inventory attributes. Can J For Res. 45:422–435. doi:10.1139/cjfr-2014-0405.
  • FOREST EUROPE. 2015. State of Europe’s Forests 2015 [Internet]. Madrid: FOREST EUROPE Liaison Unit Madrid; [cited 2016 Mar 30]. Available from: http://www.foresteurope.org/docs/fullsoef2015.pdf.
  • Genuer R, Poggi J-M, Tuleau C. 2008. Random forests: some methodological insights [ Technical Report 6729]. Paris: Institut National De Recherche En Informatique Et En Automatique.
  • Ginzler C, Hobi M. 2015. Countrywide stereo-image matching for updating digital surface models in the framework of the Swiss National Forest Inventory. Remote Sens. 7:4343–4370. doi:10.3390/rs70404343.
  • Gobakken T, Bollandsås OM, Næsset E. 2015. Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scand J For Res. 30:73–86. doi:10.1080/02827581.2014.961954.
  • Haala N. 2013. The landscape of dense image matching algorithms. In: Fritsch D, Fritsch D, editors. Photogrammetric week, 13 (2013); Stuttgart. Berlin; p. 271–284 Offenbach: Wichmann.
  • Hastie T, Tibshirani R, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer. 1 online resource (xxii, 745 (Springer series in statistics). ISBN: 978-0-387-84857-0.
  • Hawbaker TJ, Keuler NS, Lesak AA, Gobakken T, Contrucci K, Radeloff VC. 2009. Improved estimates of forest vegetation structure and biomass with a LiDAR-optimized sampling design. J Geophys Res. 114. doi:10.1029/2008JG000870.
  • Hirschmüller H. 2008. Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell. 30:328–341. doi:10.1109/TPAMI.2007.1166.
  • Hudak AT, Strand EK, Vierling LA, Byrne JC, Eitel JU, Martinuzzi S, Falkowski MJ. 2012. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sens Environ. 123:25–40. doi:10.1016/j.rse.2012.02.023.
  • Immitzer M, Stepper C, Böck S, Straub C, Atzberger C. 2016. Use of WorldView-2 stereo imagery and National Forest Inventory data for wall-to-wall mapping of growing stock. For Ecol Manage. 359:232–246. doi:10.1016/j.foreco.2015.10.018.
  • Joanneum Research. 2015. Remote sensing software: all-in-one-solution for all data types and sources [Internet]. Graz: DIGITAL – Institute for Information and Communication Technologies; [cited 2015 Dec 6]. Available from: http://www.remotesensing.at/en/remote-sensing-software.html.
  • Kane VR, McGaughey RJ, Bakker JD, Gersonde RF, Lutz JA, Franklin JF. 2010. Comparisons between field- and LiDAR-based measures of stand structural complexity. Can J For Res. 40:761–773. doi:10.1139/X10-024.
  • Köhl M, Domínguez Torres G, Marchetti M, Tomé M, Martínez de Arano I, Corona P, Thorsen BH, Lasserre B, Pettenella D, Zasada M. 2015. Part II: European Forests: Status, Trends and Policy Responses: Criterion 3: Maintenance and Encouragement of Productive Functions of Forests (Wood and Non-woods) [Internet]. In: Ministerial Conference on the Protection of Forests in Europe, editor. State of Europe’s Forests 2015. Madrid: [publisher unknown]; p. 111–132; [cited 2016 Mar 30]. Available from: http://www.foresteurope.org/docs/fullsoef2015.pdf.
  • Korpela I, Anttila P. 2004. Appraisal of the mean height of trees by means of image matching of digitised aerial photographs. Photogramm J Finland. 19:23–36.
  • Kuhn M. 2015. caret: Classification and Regression Training [Internet]. [place unknown]: [publisher unknown]; [cited 2015 Dec 6]. Available from: http://cran.r-project.org/package=caret.
  • Kuhn M. 2016. The caret package: variable importance [Internet]. [place unknown]: [publisher unknown]; [updated 2016 Jan 19; cited 2016 Mar 17]. Available from: http://topepo.github.io/caret/varimp.html.
  • Kuhn M, Johnson K. 2013. Applied predictive modeling. New York: Springer. ISBN: 978-1-4614-6848-6.
  • Liaw A, Wiener M. 2002. Classification and regression by randomForest. r/News. 2:18–22.
  • Maltamo M, Bollandsas OM, Vauhkonen J, Breidenbach J, Gobakken T, Naesset E. 2010. Comparing different methods for prediction of mean crown height in Norway spruce stands using airborne laser scanner data. Forestry. 83:257–268. doi:10.1093/forestry/cpq008.
  • McGaughey RJ. 2014. FUSION/LDV: software for LIDAR data analysis and visualization [version 3.42]. Seattle, WA: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, University of Washington.
  • [MCPFE] Fourth Ministerial Conference on the Protection of Forests in Europe, editor. 2003. Vienna resolution 2: enhancing economic viability of sustainable forest management in Europe [Internet]. Vienna, Austria: [publisher unknown]; [cited 2016 Mar 29]. Available from: http://www.foresteurope.org/docs/MC/MC_vienna_resolution_v2.pdf.
  • Müller J. 2005. Waldstrukturen als Steuergröße für Artengemeinschaften in kollinen bis submontanen Buchenwäldern [Forest structures as control quantity for species communities in colline to submontane beech forests] [Dissertation]. Freising: Technische Universität München.
  • Næsset E. 2002a. Determination of mean tree height of forest stands by digital photogrammetry. Scand J For Res. 17:446–459. doi: 10.1080/028275802320435469
  • Næsset E. 2002b. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ. 80:88–99. doi: 10.1016/S0034-4257(01)00290-5
  • Næsset E. 2004. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scand J For Res. 19:164–179. doi:10.1080/02827580310019257.
  • Næsset E, Bollandsås OM, Gobakken T, Gregoire TG, Ståhl G. 2013. Model-assisted estimation of change in forest biomass over an 11-year period in a sample survey supported by airborne LiDAR: a case study with post-stratification to provide “activity data”. Remote Sens Environ. 128:299–314. doi:10.1016/j.rse.2012.10.008.
  • Neufanger M. 2011. Richtlinie für die mittel- und langfristige Forstbetriebsplanung in den Bayerischen Staatsforsten: Forsteinrichtungsrichtlinie [Guideline for the intermediate and long-term forest management planning in the Bavarian State Forests]. Regensburg: [publisher unknown].
  • Nilsson M. 1996. Estimation of tree heights and stand volume using an airborne LiDAR system. Remote Sens Environ. 56:1–7. doi:10.1016/0034-4257(95)00224-3.
  • Packalén P, Maltamo M. 2007. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sens Environ. 109:328–341. doi:10.1016/j.rse.2007.01.005.
  • Penner M, Woods M, Pitt D. 2015. A comparison of airborne laser scanning and image point cloud derived tree size class distribution models in Boreal Ontario. Forests. 6:4034–4054. doi:10.3390/f6114034.
  • Pitt DG, Woods M, Penner M. 2014. A comparison of point clouds derived from stereo imagery and airborne laser scanning for the area-based estimation of forest inventory attributes in boreal Ontario. Can J Remote Sens. 40:214–232. doi:10.1080/07038992.2014.958420.
  • Rahlf J, Breidenbach J, Solberg S, Astrup R. 2015. Forest parameter prediction using an image-based point cloud: a comparison of semi-ITC with ABA. Forests. 6:4059–4071. doi:10.3390/f6114059.
  • Rahlf J, Breidenbach J, Solberg S, Næsset E, Astrup R. 2014. Comparison of four types of 3D data for timber volume estimation. Remote Sens Environ. 155:325–333. doi:10.1016/j.rse.2014.08.036.
  • Rametsteiner E, Sotirov M. 2015. Overall Policies, Institutions and Instruments for Sustainable Forest Management: Part I. In: Ministerial Conference on the Protection of Forests in Europe, editor. State of Europe’s Forests 2015. Madrid: [publisher unknown]; p. 39–63.
  • R Core Team. 2015. R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. Available from: http://www.r-project.org/.
  • Schmithüsen F, Hirsch F. 2010. Private forest ownership in Europe: Geneva Timber and Forest Study Paper 26 [ECE/TIM/SP/26] [Internet]. Geneva: [publisher unknown]. (no. 26); [cited 2016 Mar 25]. Available from: http://www.unece.org/fileadmin/DAM/timber/publications/SP-26.pdf.
  • Shannon CE. 1948. A mathematical theory of communication. Bell Syst Tech J. 27:379–423. English.
  • Stepper C, Straub C, Pretzsch H. 2015a. Assessing height changes in a highly structured forest using regularly acquired aerial image data. Forestry. 88:304–316. doi:10.1093/forestry/cpu050.
  • Stepper C, Straub C, Pretzsch H. 2015b. Using semi-global matching point clouds to estimate growing stock at the plot and stand levels: application for a broadleaf-dominated forest in central Europe. Can J For Res. 45:111–123. doi:10.1139/cjfr-2014-0297.
  • St-Onge B, Achaichia N. 2001. Measuring forest canopy height using a combination of LiDAR and aerial photography data. Int Arch Photogramm Remote Sens Spatial Inf Sci. 34:131–137.
  • St-Onge B, Audet F, Bégin J. 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests. 6:3899–3922. doi:10.3390/f6113899.
  • Straub C, Stepper C. 2016. Using digital aerial photogrammetry and the random forest approach to model forest inventory attributes in beech- and spruce-dominated central European forests. Photogramm Fernerkund Geoinf. (PFG):75–89. doi:10.1127/pfg/2016/0292.
  • Straub C, Stepper C, Seitz R, Waser LT. 2013. Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Can J For Res. 43:731–741. doi:10.1139/cjfr-2013-0125.
  • Straub C, Stepper C, Seitz R, Waser LT. 2015. Amtliche Fernerkundungsdaten in der Forstwirtschaft - Anwendungspotential in Bayern [Official remote sensing data in forestry - potentials for application in Bavaria]. In: Wallner A, Seitz R, editors. Der gepixelte Wald -Reloaded. Der gepixelte Wald -Reloaded; 17.-18. März 2015; Freising. 250th ed. Freising: Zentrum Wald-Forst-Holz Weihenstephan; p. 7–17 (Forstliche Forschungsberichte München; vol. 214).
  • Thünen-Institut, editor. 2016. Dritte Bundeswaldinventur - Ergebnisdatenbank [Third National Forest Inventory - Result Database] [Internet]. [place unknown]: [publisher unknown]; [cited 2016 Mar 16]. Available from: https://bwi.info/.
  • Vastaranta M, Niemi M, Wulder MA, White JC, Nurminen K, Litkey P, Honkavaara E, Holopainen M, Hyyppä J. 2015. Forest stand age classification using time series of photogrammetrically derived digital surface models. Scand J For Res:1–37. doi:10.1080/02827581.2015.1060256.
  • Vastaranta M, Wulder MA, White JC, Pekkarinen A, Tuominen S, Ginzler C, Kankare V, Holopainen M, Hyyppä J, Hyyppä H. 2013. Airborne laser scanning and digital stereo imagery measures of forest structure: comparative results and implications to forest mapping and inventory update. Can J Remote Sens. 39:382–395. doi:10.5589/m13-046.
  • Verkerk PJ, Anttila P, Eggers J, Lindner M, Asikainen A. 2011. The realisable potential supply of woody biomass from forests in the European Union. For Ecol Manage. 261:2007–2015. doi:10.1016/j.foreco.2011.02.027.
  • Waser L, Fischer C, Wang Z, Ginzler C. 2015. Wall-to-Wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests. 6:4510–4528. doi:10.3390/f6124386.
  • White JC, Stepper C, Tompalski P, Coops NC, Wulder MA. 2015. Comparing ALS and image-based point cloud metrics and Modelled Forest Inventory attributes in a complex coastal forest environment. Forests. 6:3704–3732. doi:10.3390/f6103704.
  • White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M. 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using the area-based approach. Victoria: [publisher unknown]. 50 p. (Information report; FI-X-010). ISBN: 978-1-100-22385-8.
  • White JC, Wulder MA, Vastaranta M, Coops NC, Pitt D, Woods M. 2013. The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests. 4:518–536. doi:10.3390/f4030518.
  • Zald HS, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC. 2016. Integrating landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ. 176:188–201. doi:10.1016/j.rse.2016.01.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.