526
Views
19
CrossRef citations to date
0
Altmetric
Research Articles

Airborne LiDAR-derived elevation data in terrain trafficability mapping

, , , &
Pages 762-773 | Received 15 Apr 2016, Accepted 11 Feb 2017, Published online: 06 Mar 2017

References

  • Aaltonen VT, Aarnio B, Hyyppä E, Kaitera P, Keso L, Kivinen E, Kokkonen P, Kotilainen M, Sauramo M, Tuovila P, Vuorinen J. 1949. Maaperäsanaston ja maalajien luokituksen tarkastus v. 1949 [A critical review of soil terminology and soil classification in Finland in the year 1949]. Maataloustiet Aikak. 21:37–66. Finnish.
  • Ågren A, Lidberg W, Strömgren M, Ogilvie J, Arp P. 2014. Evaluating digital terrain indices for soil wetness mapping – a Swedish case study. Hydrol Earth Syst Sci. 18:3623–3634. doi: 10.5194/hess-18-3623-2014
  • Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Automat Contr. 19:716–723. doi: 10.1109/TAC.1974.1100705
  • Anttila T. 1998. Metsämaan raiteistumisen ennustaminen WES-menetelmä ä käyttäen [Evaluation of the WES-method in rut depth modelling]. Helsinki: University of Helsinki, Department of Forest Resource Management. Publications 17. 53 p. ISBN 951-45-8025-7. Finnish.
  • Arp PA. 2009. High-resolution flow-channel and wet-areas maps: a tool for better forest operations planning. Sustainable Forest Management Network, SFM Network Research Note. 55:1–6.
  • Beven K, Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci J. 24:43–69. doi: 10.1080/02626667909491834
  • Blöschl G, Sivapalan M. 1995. Scale issues in hydrological modelling: a review. Hydrol Process. 9:251–290. doi: 10.1002/hyp.3360090305
  • Bygdén G, Eliasson L, Wästerlund I. 2003. Rut depth, soil compaction and rolling resistance when using bogie tracks. J Terramech. 40:179–190. doi: 10.1016/j.jterra.2003.12.001
  • Cajander AK. 1913. Über Waldtypen [About forest types]. Acta For Fenn. 1:1–175. (German). doi: 10.14214/aff.7526
  • Cambi M, Certini G, Neri F, Marchi E. 2015. The impact of heavy traffic on forest soils: a review. For Ecol Manag. 338:124–138. doi: 10.1016/j.foreco.2014.11.022
  • Campbell D, White B, Arp P. 2013. Modeling and mapping soil resistance to penetration and rutting using LiDAR-derived digital elevation data. J Soil Water Conserv. 68:460–473. doi: 10.2489/jswc.68.6.460
  • Cohen J. 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas. 20:37–46. doi: 10.1177/001316446002000104
  • Douglas DH. 1994. Least-cost path in GIS using an accumulated cost surface and slopelines. Cartographica. 31:37–51. doi: 10.3138/D327-0323-2JUT-016M
  • Elbanna E, Witney B. 1987. Cone penetration resistance equation as a function of the clay ratio, soil moisture content and specific weight. J Terramech. 24:41–56. doi: 10.1016/0022-4898(87)90058-9
  • Eliasson L. 2005. Effects of forwarder tyre pressure on rut formation and soil compaction. Silva Fenn. 39:549–557. doi: 10.14214/sf.366
  • Eliasson L, Wästerlund I. 2007. Effects of slash reinforcement of strip roads on rutting and soil compaction on a moist fine-grained soil. For Ecol Manag. 252:118–123. doi: 10.1016/j.foreco.2007.06.037
  • Finnish Forest Centre. 2013. Suomen metsäkeskuksen maastotarkastusohje [Field control instructions of Finnish Forest Centre]. [Internet]. [cited 2016 Mar 31]. Available from: http://www.metsakeskus.fi/sites/default/files/smk-maastotarkastusohje-2013.pdf. Finnish.
  • Finnish Meteorological Institute. 2016. Climate statistics. [Internet]. [cited 2016 Mar 31]. Available from: http://en.ilmatieteenlaitos.fi/climate-statistics
  • Guo Z, Zhang L, Zhang D. 2010. A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process. 19:1657–1663. doi: 10.1109/TIP.2010.2044957
  • Haavisto M, editor. 1983. Maaperäkartan käyttöopas [Basic mapping of quaternary deposits in Finland]. Geological Survey of Finland, Guide 10, 80 p. Finnish. ISBN 951-690-170-0.
  • Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, Lüscher P, Widmer F, Frey B. 2014. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8:226–244. doi: 10.1038/ismej.2013.141
  • Hjerdt K, McDonnell J, Seibert J, Rodhe A. 2004. A new topographic index to quantify downslope controls on local drainage. Water Resour Res. 40:1–6. doi: 10.1029/2004WR003130
  • Hodgson ME, Bresnahan P. 2004. Accuracy of airborne LIDAR-derived elevation. Photogramm Eng Rem Sens. 70:331–339. doi: 10.14358/PERS.70.3.331
  • Hohenthal J, Alho P, Hyyppä J, Hyyppä H. 2011. Laser scanning applications in fluvial studies. Prog Phys Geogr. 35:782–809. doi: 10.1177/0309133311414605
  • Holmgren P. 1994. Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrol Process. 8:327–334. doi: 10.1002/hyp.3360080405
  • Holopainen M, Vastaranta M, Hyyppä J. 2014. Outlook for the next generation’s precision forestry in Finland. Forests. 5:1682–1694. doi: 10.3390/f5071682
  • Hosmer Jr DW, Lemeshow S, Sturdivant RX. 2013. Applied logistic regression. New Jersey: John Wiley & Sons.
  • Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M. 2008. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Rem Sens. 29:1339–1366. doi: 10.1080/01431160701736489
  • International Society for Terrain-Vehicle Systems Standardization Committee. 1997. International society for terrain-vehicle systems standards. J Terramech. 14:153–182.
  • Jasiewicz J, Stepinski TF. 2013. Geomorphons — a pattern recognition approach to classification and mapping of landforms. Geomorphology. 182:147–156. doi: 10.1016/j.geomorph.2012.11.005
  • Korpela I, Koskinen M, Vasander H, Holopainen M, Minkkinen K. 2009. Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For Ecol Manag. 258:1549–1566. doi: 10.1016/j.foreco.2009.07.007
  • Kraus K, Pfeifer N. 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Rem Sens. 53:193–203. doi: 10.1016/S0924-2716(98)00009-4
  • Maltamo M, Næsset E, Vauhkonen J. 2014. Forestry application of airborne laser scanning. Dordrecht: Springer.
  • Manel S, Williams HC, Ormerod SJ. 2001. Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol. 38:921–931. doi: 10.1046/j.1365-2664.2001.00647.x
  • Mohtashami S, Bergkvist I, Löfgren B, Berg S. 2012. A GIS approach to analyzing off-road transportation: a case study in Sweden. Croat J For Eng. 33:275–284.
  • Moore ID, Gessler P, Nielsen G, Peterson G. 1993. Soil attribute prediction using terrain analysis. Soil Sci Soc Am J. 57:443–452. doi: 10.2136/sssaj1993.03615995005700020026x
  • Mulder V, De Bruin S, Schaepman M, Mayr T. 2011. The use of remote sensing in soil and terrain mapping – a review. Geoderma. 162:1–19. doi: 10.1016/j.geoderma.2010.12.018
  • Murphy P, Ogilvie J, Arp P. 2009. Topographic modelling of soil moisture conditions: a comparison and verification of two models. Eur J Soil Sci. 60:94–109. doi: 10.1111/j.1365-2389.2008.01094.x
  • Murphy PN, Ogilvie J, Connor K, Arp PA. 2007. Mapping wetlands: a comparison of two different approaches for New Brunswick, Canada. Wetlands. 27:846–854. doi: 10.1672/0277-5212(2007)27[846:MWACOT]2.0.CO;2
  • Murphy PNC, Ogilvie J, Meng F-R, White B, Bhatti JS, Arp PA. 2011. Modelling and mapping topographic variations in forest soils at high resolution: a case study. Ecol Model. 222:2314–2332. doi: 10.1016/j.ecolmodel.2011.01.003
  • Nagelkerke NJ. 1991. A note on a general definition of the coefficient of determination. Biometrika. 78:691–692. doi: 10.1093/biomet/78.3.691
  • National Land Survey of Finland. 2016. Open data file download service. [Internet]. [cited 2016 Mar 31]. Available from: http://www.maanmittauslaitos.fi/en/aineistot-ja-palvelut
  • Nordfjell T, Björheden R, Thor M, Wästerlund I. 2010. Changes in technical performance, mechanical availability and prices of machines used in forest operations in Sweden from 1985 to 2010. Scand J For Res. 25:382–389. doi: 10.1080/02827581.2010.498385
  • Nurminen T, Korpunen H, Uusitalo J. 2006. Time consumption analysis of the mechanized cut-to-length harvesting system. Silva Fenn. 40:335–363. doi: 10.14214/sf.346
  • Ojala T, Pietikäinen M, Mäenpää T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 24:971–987. doi: 10.1109/TPAMI.2002.1017623
  • O’loughlin E. 1986. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res. 22:794–804. doi: 10.1029/WR022i005p00794
  • Pei T, Qin C, Zhu A, Yang L, Luo M, Li B, Zhou C. 2010. Mapping soil organic matter using the topographic wetness index: a comparative study based on different flow-direction algorithms and kriging methods. Ecol Ind. 10:610–619. doi: 10.1016/j.ecolind.2009.10.005
  • Pippuri I, Suvanto A, Maltamo M, Korhonen KT, Pitkänen J, Packalén P. 2016. Classification of forest land attributes using multi-source remotely sensed data. Int J Appl Earth Obs Geoinfo. 44:11–22. doi: 10.1016/j.jag.2015.07.002
  • Quinn P, Beven K, Chevallier P, Planchon O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process. 5:59–79. doi: 10.1002/hyp.3360050106
  • Quinn P, Beven K, Lamb R. 1995. The in (a/tan/β) index: how to calculate it and how to use it within the topmodel framework. Hydrol Process. 9:161–182. doi: 10.1002/hyp.3360090204
  • R Development Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [cited 2016 Mar 31]. Available from: www.R-project.org
  • Rodhe A, Seibert J. 1999. Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agr For Meteorol. 98–99:325–340. doi: 10.1016/S0168-1923(99)00104-5
  • Saarilahti M. 2002. Soil interaction model. University of Helsinki. Department of Forest Resource Management. [Internet]. [cited 2016 Mar 31]. Available from: http://ethesis.helsinki.fi/julkaisut/maa/mvaro/publications/31/soilinte.pdf
  • Salmi M. 2011. Feasibility of soil map and digital elevation model for mapping the areas that are vulnerable to soil disturbance during wood procurement [master’s thesis]. University of Helsinki. Department of Forest Sciences. Finnish.
  • Schwanghart W, Kuhn NJ. 2010. TopoToolbox: a set of Matlab functions for topographic analysis. Environ Model Software. 25:770–781. doi: 10.1016/j.envsoft.2009.12.002
  • Stendahl J, Lundin L, Nilsson T. 2009. The stone and boulder content of Swedish forest soils. Catena. 77:285–291. doi: 10.1016/j.catena.2009.02.011
  • Suvinen A. 2006. A GIS-based simulation model for terrain tractability. J Terramech. 43:427–449. doi: 10.1016/j.jterra.2005.05.002
  • Suvinen A, Tokola T, Saarilahti M. 2009. Terrain trafficability prediction with GIS analysis. For Sci. 55:433–442.
  • Sørensen R, Seibert J. 2007. Effects of DEM resolution on the calculation of topographical indices: TWI and its components. J Hydrol. 347:79–89. doi: 10.1016/j.jhydrol.2007.09.001
  • Sørensen R, Zinko U, Seibert J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci Discuss. 10:101–112. doi: 10.5194/hess-10-101-2006
  • Uusitalo J, Salomäki M, Ala-Ilomäki J. 2015. Variation of the factors affecting soil bearing capacity of ditched pine bogs in southern Finland. Scand J For Res. 30:429–439.
  • Vega-Nieva DJ, Murphy PNC, Castonguay M, Ogilvie J, Arp PA. 2009. A modular terrain model for daily variations in machine-specific forest soil trafficability. Can J Soil Sci. 89:93–109. doi: 10.4141/CJSS06033
  • Viro PJ. 1947. Metsämaan raekoostumus ja viljavuus varsinkin maan kivisyyttä silmällä pitäen [The mechanical composition and fertility of forest soil. Taking into consideration especially the stoniness of the soil.]. Comm Inst For Fenn. 35:1–115. Finnish.
  • Wang L, Liu H. 2006. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int J Geogr Inf Sci. 20:193–213. doi: 10.1080/13658810500433453
  • Western AW, Grayson RB, Blöschl G, Willgoose GR, McMahon TA. 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour Res. 35:797–810. doi: 10.1029/1998WR900065
  • Westman CJ. 1990. Metsämaan fysikaaliset ja fysikaalis-kemialliset ominaisuudet CT-OMaT kasvupaikkasarjassa [Soil physical and physico-chemical properties of Finnish upland forest sites]. Silva Fenn. 24:141–158. Finnish. doi: 10.14214/sf.a15568
  • Wismer R, Luth H. 1974. Off-road traction prediction for wheeled vehicles. Trans ASAE. 17:0008–0010. 14. doi: 10.13031/2013.36772
  • Wulder M, Coops N, Hudak A, Morsdorf F, Nelson R, Newnham G, Vastaranta M. 2013. Status and prospects for LiDAR remote sensing of forested ecosystems. Can J Rem Sens. 39:S1–S5. doi: 10.5589/m13-051
  • Wästerlund I. 1992. Extent and causes of site damage due to forestry traffic. Scand J For Res. 7:135–142. doi: 10.1080/02827589209382706

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.