1,013
Views
23
CrossRef citations to date
0
Altmetric
Articles

Equations for estimating above- and belowground biomass of Norway spruce, Scots pine, birch spp. and European aspen in Latvia

, &
Pages 58-70 | Received 07 Feb 2017, Accepted 28 May 2017, Published online: 12 Jun 2017

References

  • Ahti T, Hämet-Ahti L, Jalas J. 1968. Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn. 3:169–211.
  • Andersen H-E, Reutebuch SE, McGaughey RJ. 2006. A rigorous assessment of tree height measurements obtained using airborne LiDAR and conventional field methods. Can J Remote Sens. 32:355–366. doi: 10.5589/m06-030
  • Bārdulis A, Jansons Ā, Liepa I. 2012. Below-ground biomass production in young stands of Scots pine (Pinus sylvestris L.) on abandoned agricultural land. In: Research for Rural Development. Annual 18th International Scientific Conference Proceedings. Vol. 2. Jelgava. p. 49–54.
  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67(1):1–48. doi: 10.18637/jss.v067.i01
  • Berninger F, Nikinmaa E, Hari P, Mencuccini M, Grace J. 1995. Evaporative demand determines branchiness of Scots pine. Oecologia. 102:164–168. doi: 10.1007/BF00333247
  • Cairns MA, Brown S, Helmer EH, Baumgardner GA, Cairns MA, Brown S, Helmer EH, Baumgardner GA. 1997. Root biomass allocation in the world’s upland forests. Oecologia. 111:1–11. doi: 10.1007/s004420050201
  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145:87–99. doi: 10.1007/s00442-005-0100-x
  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 20:3177–3190. doi: 10.1111/gcb.12629
  • Cifuentes-Jara M, Henry M, Réjou-Méchain M, Wayson C, Zapata-Cuartas M, Piotto D, Alice Guier F, Castañeda Lombis H, Castellanos López E, Cuenca Lara R, et al. 2015. Guidelines for documenting and reporting tree allometric equations. Ann For Sci. 72:763–768. doi: 10.1007/s13595-014-0415-z
  • Cleveland WS. 1979. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 74:829–836. doi: 10.1080/01621459.1979.10481038
  • [CSB] Central Statistical Bureau [Internet]. 2015. Tree species in forests of Latvia; [cited 2017 April 27]. Available from: http://www.csb.gov.lv/en/statistikas-temas/px_tabulas/tree-species-forests-latvia-43422.html.
  • Di Cosmo L, Gasparini P, Tabacchi G. 2016. A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. For Ecol Manage. 361:269–276.
  • [EEA] European Environment Agency. 2007. European forest types. Categories and types for sustainable forest management reporting and policy, EEA Technical report. Copenhagen.
  • Ene LT, Næsset E, Gobakken T, Gregoire TG, Ståhl G, Nelson R. 2012. Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach. Remote Sens Environ. 123:579–592. doi: 10.1016/j.rse.2012.04.017
  • [FAO] Food and Agriculture Organization [Internet]. 2014. Manual for visual assessment of forest crown condition; [cited 2017 April 27]. Available from: http://www.fao.org/3/a-i4214e.pdf.
  • Grassi G, House J, Dentener F, Federici S, den Elzen M, Penman J. 2017. The key role of forests in meeting climate targets requires science for credible mitigation. Nat Clim Change. 7:220–226. doi: 10.1038/nclimate3227
  • Hunter MO, Keller M, Victoria D, Morton DC. 2013. Tree height and tropical forest biomass estimation. Biogeosciences. 10:8385–8399. doi: 10.5194/bg-10-8385-2013
  • IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. Published: IGES.
  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey R. 2003. National-scale biomass estimators for United States tree species. For Sci. 49:12–35.
  • Jõgiste K, Metslaid M, Uri V. 2015. Afforestation and land use dynamics in the Baltic states. In: JA Stanturf, editor. Restoration of boreal and temperate forests. Second ed. Boca Raton (FL): CRC Press; p. 187–200.
  • Johansson T. 2000. Biomass equations for determining fractions of European aspen growing on abandoned farmland and some practical implications. Biomass Bioenerg. 18:147–159. doi: 10.1016/S0961-9534(99)00078-1
  • Johansson T. 2002. Increment and biomass in 26- to 91-year-old European aspen and some practical implications. Biomass Bioenerg. 23:245–255. doi: 10.1016/S0961-9534(02)00056-9
  • Korsmo H. 1995. Weight equations for determining biomass fractions of young hardwoods from natural regenerated stands. Scand J For Res. 10:333–346. doi: 10.1080/02827589509382900
  • Liepa I, Blija T. 2008. Latvijas egļu mežu koku biomasas struktūra [Tree biomass structure of spruce forests in Latvia]. LLU Raksti. 20:32–37.
  • Liepiņš J, Liepiņš K. 2015. Evaluation of bark volume of four tree species in Latvia. In: Research for Rural Development. Annual 21th International Scientific Conference Proceedings. Vol. 2. Jelgava; p. 22–28.
  • Marklund LG. 1987. Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden (Rapport 43). Umeå: Department of Forest Survey, Swedish University of Agricultural Sciences.
  • Marklund LG. 1988. Biomassafunktioner för tall, gran och björk I Sverige [Biomass functions for pine, spruce and birch in Sweden (Report 45)]. Umeå: Department of Forest Survey, Swedish University of Agricultural Sciences. Swedish with summary in English.
  • Mokany K, Raison RJ, Prokushkin AS. 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol. 12:84–96. doi: 10.1111/j.1365-2486.2005.001043.x
  • Motulsky HJ, Christopoulos A. 2003. Fitting models to biological data using linear and nonlinear regression: A practical guide to curve fitting. San Diego (CA): GraphPad Software Inc.
  • Muukkonen P. 2007. Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res. 126:157–166. doi: 10.1007/s10342-007-0168-4
  • Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WMJ, Thivolle-Cazat A, Bronisz K, et al. 2016. Comparison of carbon estimation methods for European forests. For Ecol Manage. 361:397–420. doi: 10.1016/j.foreco.2015.11.016
  • Ni Y, Eskeland GS, Giske J, Hansen JP. 2016. The global potential for carbon capture and storage from forestry. Carbon Balance Manag. 11:2481. doi: 10.1186/s13021-016-0044-y
  • Pan Y, Birdsey R, Fang J, Houghton R, Kauppi PE, Kurz W, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world’s forests. Science. 333:988–993. doi: 10.1126/science.1201609
  • Petersson H, Holm S, Ståhl G, Alger D, Fridman J, Lehtonen A, Lundström A, Mäkipää R. 2012. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass – a comparative study. For Ecol Manage. 270:78–84. doi: 10.1016/j.foreco.2012.01.004
  • Petersson H, Stahl G. 2006. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula publescens in Sweden. Scand J For Res. 21:84–93. doi: 10.1080/14004080500486864
  • Picard N, Rutishauser E, Ploton P, Ngomanda A, Henry M. 2015. Should tree biomass allometry be restricted to power models? For Ecol Manage. 353:156–163. doi: 10.1016/j.foreco.2015.05.035
  • Repola J. 2008. Biomass equations for birch in Finland. Silva Fenn. 42:605–624. doi: 10.14214/sf.236
  • Repola J. 2009. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43:625–647. doi: 10.14214/sf.184
  • Repola J, Ulvcrona KA. 2014. Modelling biomass of young and dense Scots pine (Pinus sylvestris L.) dominated mixed forests in northern Sweden. Silva Fenn. 48:1–21. doi: 10.14214/sf.1190
  • Rock J. 2007. Suitability of published biomass equations for aspen in Central Europe – results from a case study. Biomass Bioenerg. 31:299–307. doi: 10.1016/j.biombioe.2007.01.003
  • Roxburgh SH, Paul KI, Clifford D, England JR, Raison RJ. 2015. Guidelines for constructing allometric models for the prediction of woody biomass: How many individuals to harvest? Ecosphere. 6:art38. doi: 10.1890/ES14-00251.1
  • Sileshi GW. 2014. A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manage. 329:237–254. doi: 10.1016/j.foreco.2014.06.026
  • Smith A, Granhus A, Astrup R. 2016. Functions for estimating belowground and whole tree biomass of birch in Norway. Scand J For Res. 31:568–582. doi: 10.1080/02827581.2016.1141232
  • Smith A, Granhus A, Astrup R, Bollandsås OM, Petersson H. 2014. Functions for estimating aboveground biomass of birch in Norway. Scand J For Res. 29:565–578. doi: 10.1080/02827581.2014.951389
  • Snowdon P. 1991. A ratio estimator for bias correction in logarithmic regressions. Can J For Res. 21:720–724. doi: 10.1139/x91-101
  • Somogyi Z, Cienciala E, Makipaa R, Muukkonen P, Lehtonen A, Weiss P. 2007. Indirect methods of large-scale forest biomass estimation. Eur J For Res. 126:197–207. doi: 10.1007/s10342-006-0125-7
  • Stegen JC, Swenson NG, Enquist BJ, White EP, Phillips OL, Jørgensen PM, Weiser MD, Monteagudo Mendoza A, Núñez Vargas P. 2011. Variation in above-ground forest biomass across broad climatic gradients. Glob Ecol Biogeogr. 20:744–754. doi: 10.1111/j.1466-8238.2010.00645.x
  • Temesgen H, Affleck D, Poudel K, Gray A, Sessions J. 2015. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J For Res. 11:1–10. doi: 10.1080/02827581.2015.1012114
  • Varik M, Aosaar J, Ostonen I, Lõhmus K, Uri V. 2013. Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. For Ecol Manage. 302:62–70. doi: 10.1016/j.foreco.2013.03.033
  • Wagenmakers E-J, Farrell S. 2004. AIC model selection using Akaike weights. Psychon Bull Rev. 11:192–196. doi: 10.3758/BF03206482
  • Weiskittel AR, MacFarlane DW, Radtke PJ, Affleck DLR, Temesgen H, Woodall CW, Westfall JA, Coulston JW. 2015. A call to improve methods for estimating tree biomass for regional and national assessments. J For. 113:414–424.
  • Wirth C, Schumacher J, Schulze ED. 2004. Generic biomass functions for Norway spruce in central Europe – a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol. 24:121–139. doi: 10.1093/treephys/24.2.121
  • Zianis D, Mencuccini M. 2004. On simplifying allometric analyses of forest biomass. For Ecol Manage. 187:311–332. doi: 10.1016/j.foreco.2003.07.007
  • Zianis D, Muukkonen P, Makipaa R, Mencuccini M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr. 4:1–63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.