226
Views
5
CrossRef citations to date
0
Altmetric
Articles

Shifts in the bacterial community structure and function along a vegetation gradient in the Great Xing’an Mountains

, , , , , , , & show all
Pages 103-113 | Received 16 May 2016, Accepted 25 May 2017, Published online: 27 Jun 2017

References

  • Acosta-Martinez V, Dowd S, Sun Y, Allen V. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem. 40:2762–2770. doi: 10.1016/j.soilbio.2008.07.022
  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. Isme J. 7:1344–1353. doi: 10.1038/ismej.2013.16
  • An SS, Huang YM, Zheng FL. 2009. Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China. Appl Soil Ecol. 41:286–292. doi: 10.1016/j.apsoil.2008.12.001
  • Andruschkewitsch M, Wachendorf C, Sradnick A, Hensgen F, Joergensen RG, Wachendorf M. 2014. Soil substrate utilization pattern and relation of functional evenness of plant groups and soil microbial community in five low mountain natura 2000. Plant Soil. 383:275–289. doi: 10.1007/s11104-014-2167-9
  • Atkinson D, Watson CA. 2000. The beneficial rhizosphere: a dynamic entity. Appl Soil Ecol. 15:99–104. doi: 10.1016/S0929-1393(00)00084-6
  • Bell CW, Acosta-Martinez V, Mcintyre NE, Cox S, Tissue DT, Zak JC. 2009. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microbial Ecol. 58:827–842. doi: 10.1007/s00248-009-9529-5
  • Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 456:53–59. doi: 10.1038/nature07517
  • Berard A, Bouchet T, Sévenier G, Pablo AL, Gros R. 2011. Resilience of soil microbial communities impacted by severe drought and high temperature in the context of Mediterranean heat waves. Eur J Soil Biol. 47:333–342. doi: 10.1016/j.ejsobi.2011.08.004
  • Bowman JP, Nichols DS. 2005. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol. 55:1471–1486. doi: 10.1099/ijs.0.63527-0
  • Carney KM, Matson PA. 2005. Plant communities, soil microorganisms, and soil carbon cycling: does altering the world belowground matter to ecosystem functioning? Ecosystems. 8:928–940. doi: 10.1007/s10021-005-0047-0
  • Davinic M, Fultz LM, Acosta-Martinez V, Calderón FJ, Cox SB, Dowd SE, Allen VG, Zak JC, Moore-Kucera J. 2012. Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition. Soil Biol Biochem. 46:63–72. doi: 10.1016/j.soilbio.2011.11.012
  • de Castro VHL, Schroeder LF, Quirino BF, Kruger RH, Barreto CC. 2013. Acidobacteria from oligotrophic soil from the cerrado can grow in a wide range of carbon source concentrations. Can J Microbiol. 59:746–753. doi: 10.1139/cjm-2013-0331
  • Degens BP, Vojvodić-Vuković M. 1999. A sampling strategy to assess the effects of land use on microbial functional diversity in soils. Soil Res. 37:593–602.
  • Eichorst SA, Breznak JA, Schmidt TM. 2007. Isolation and characterization of soil bacteria that define Teniglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microb. 73:2708–2717. doi: 10.1128/AEM.02140-06
  • Eisenhauer N, Yee K, Johnson EA, Maraun M, Parkinson D, Straube D, Scheu S. 2011. Positive relationship between herbaceous layer diversity and the performance of soil biota in a temperate forest. Soil Biol Biochem. 43:462–465. doi: 10.1016/j.soilbio.2010.10.018
  • Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology. 88:1354–1364. doi: 10.1890/05-1839
  • Fierer N, Jackson RB. 2006. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA. 103:626–631. doi: 10.1073/pnas.0507535103
  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6:1007–1017. doi: 10.1038/ismej.2011.159
  • Fu WG, Li PP, Wu YY, Bian XM. 2006. Diurnal dynamics of microclimate at different succession stages of vegetation communities in inner-river wetland of Zhenjiang city. Chinese J Appl Ecol. 17:1699–1704.
  • Gan QM. 2013. Nutrients stoichiometry of soil and plant at different vegetation degradation stages in the northern greater Xing’an mountains. Harbin: Northeast Forestry University.
  • Gan QM, Sun HL, Zheng H, Hao LF, Liu TY. 2013. Concentrations of C, N, P and stoichiometry of soil and plant at the different vegetation degradation stages in great Xing’an mountains. Forest Eng. 29:1–5.
  • Garcia C, Roldan A, Hernandez T. 2005. Ability of different plant species to promote microbiological processes in semiarid soil. Geoderma. 124:193–202. doi: 10.1016/j.geoderma.2004.04.013
  • Gardner T, Acostamartinez V, Senwo Z, Dowd SE. 2011. Soil rhizosphere microbial communities and enzyme activities under organic farming in Alabama. Diversity. 3:308–328. doi: 10.3390/d3030308
  • Garland JL. 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem. 28:213–221. doi: 10.1016/0038-0717(95)00112-3
  • Garland JL. 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. Fems Microbiol Ecol. 24:289–300. doi: 10.1111/j.1574-6941.1997.tb00446.x
  • Garland JL, Mills AL. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl Environ Microb. 57:2351–2359.
  • Grayston SJ, Griffith GS, Mawdsley JL, Campbell CD, Bardgett RD. 2001. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol Biochem. 33:533–551. doi: 10.1016/S0038-0717(00)00194-2
  • He F, Yang B, Wang H, Yan Q, Cao Y, He X. 2016. Changes in composition and diversity of fungal communities along Quercus mongolica forests developments in Northeast China. Appl Soil Ecol. 100:162–171. doi: 10.1016/j.apsoil.2015.12.014
  • Helal HM, Sauerbeck D. 1989. Carbon turnover in the rhizosphere. J Plant Nutr Soil Sc. 152:211–216.
  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. 2010. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia. 162:505–513. doi: 10.1007/s00442-009-1479-6
  • Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z. 2015. Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol Res. 181:33–42. doi: 10.1016/j.micres.2015.08.004
  • Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. 2011. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol Biochem. 42:162–168.
  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3:442–453. doi: 10.1038/ismej.2008.127
  • Joos FIC, Prentice S, Sitch R, Meyer G, Hoos GK, Plattner S, Hasselmann K. 2001. Global warming feedbacks on terrestrial carbon uptake under the intergovernmental panel on climate change (IPCC) emission scenarios. Global Biogeochem Cycle.15:891–907. doi: 10.1029/2000GB001375
  • Kara Ö, Bolat I, Çakıroğlu K, Öztürk M. 2008. Plant canopy effects on litter accumulation and soil microbial biomass in two temperate forests. Biol Fert Soils. 43:2184–2193.
  • Kirchman DL. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 39:91–100.
  • Klopatek CC, De Bano LF, Klopatek JM. 1988. Effects of simulated fire on vesicular-arbuscular mycorrhizae in pinyon-juniper woodland soil. Plant Soil. 109:245–249. doi: 10.1007/BF02202090
  • Kuramae EE, Yergeau E, Wong LC, Pijl AS, van Veen JA, Kowalchuk GA. 2012. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 79:12–24. doi: 10.1111/j.1574-6941.2011.01192.x
  • Ladygina N, Hedlund K. 2010. Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem. 42:162–168. doi: 10.1016/j.soilbio.2009.10.009
  • LaMontagne MG, Schimel JP, Holden PA. 2003. Comparison of subsurface and surface soil bacterial communities in California grassland as assessed by terminal restriction fragment length polymorphisms of PCR amplified 16S rRNA genes. Microb Ecol. 46:216–227. doi: 10.1007/s00248-003-1006-y
  • Lewandowski TE, Forrester JA, Mladenoff DJ, D’Amato AW, Palik BJ. 2016. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests. Appl Soil Ecol. 99:110–117. doi: 10.1016/j.apsoil.2015.11.001
  • Liu JJ, Sui YY, Yu ZH, Yao Q, Shi Y, Chu HY, Jin J, Liu XB, Wang GH. 2016. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol Biochem. 95:212–222. doi: 10.1016/j.soilbio.2015.12.021
  • Li X, Sun ML, Zhang HH, Xu N, Sun GY. 2016. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community. Microb Biotechnol. 9:293–304. doi: 10.1111/1751-7915.12342
  • Lynch JM, Whipps JM. 1990. Substrate flow in the rhizosphere. Plant Soil. 129:1–10. doi: 10.1007/BF00011685
  • Marschner P, Yang CH, Lieberei R, Crowley DE. 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem. 33:1437–1445. doi: 10.1016/S0038-0717(01)00052-9
  • Marshall CB, McLaren JR, Turkington R. 2011. Soil microbial communities resistant to changes in plant functional group composition. Soil Biol Biochem. 43:78–85. doi: 10.1016/j.soilbio.2010.09.016
  • Meharg AA, Killham K. 1990. The effect of soil pH on rhizosphere carbon flow of Lolium perenne. Plant Soil. 123:1–7. doi: 10.1007/BF00009920
  • Mitchell RJ, Keith AM, Potts JM, Ross J, Reid E, Dawson LA. 2012. Overstory and understory vegetation interact to alter soil community composition and activity. Plant Soil. 352:65–84. doi: 10.1007/s11104-011-0980-y
  • Mu C, Lu H, Wang B, Bao X, Cui W. 2013. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii-Carex schmidtii forested wetlands in Daxing’anling, northeast China. Forest Ecol Manag. 293:140–148. doi: 10.1016/j.foreco.2012.12.031
  • Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, et al. 2012. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microb. 7:7398–7406. doi: 10.1128/AEM.01325-12
  • Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol. 83:607–621. doi: 10.1111/1574-6941.12018
  • Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR. 2010. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem. 42:2153–2160. doi: 10.1016/j.soilbio.2010.08.011
  • Pettit NM, Smith ARJ, Freedman RB, Burns RG. 1976. Soil urease: activity, stability and kinetic properties. Soil Biol Biochem. 8:479–484. doi: 10.1016/0038-0717(76)90089-4
  • Rayment G, Higginson FR. 1992. Australian laboratory hand book of soil and water chemical methods. Melbourne: Inkata Press.
  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. Isme J. 1:283–290. doi: 10.1038/ismej.2007.53
  • Rutgers M, Breure AM, Insam H, Bloem J, Benedetti A, Hopkins DW. 2006. Substrate utilization in BiologTM plates for analysis of CLPP. Wallington: CABI Publishing; p. 212–227.
  • Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem. 34:1309–1315. doi: 10.1016/S0038-0717(02)00074-3
  • Salomo S, Münch C, Röske I. 2009. Evaluation of the metabolic diversity of microbial communities in four different filter layers of a constructed wetland with vertical flow by Biolog™ analysis. Water Res. 43:4569–4578. doi: 10.1016/j.watres.2009.08.009
  • Shi JY, Yuan XF, Lin HR, Yang YQ, Li ZY. 2011. Differences in soil properties and bacterial communities between the rhizosphere and bulk soil and among different production areas of the medicinal plant Fritillaria thunbergii. Int J Mol Sci. 12:3770–3785. doi: 10.3390/ijms12063770
  • Silver MCR, Nkwiine C. 2007. A review of studies on decomposer microbiota in Uganda. Afr J Ecol. 45:36–44. doi: 10.1111/j.0141-6707.2007.00804.x
  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB. 2001. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microb. 67:4374–4376. doi: 10.1128/AEM.67.9.4374-4376.2001
  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L. 2007. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fert Soils. 43:565–574. doi: 10.1007/s00374-006-0139-9
  • Spohn M, Kuzyakov Y. 2014. Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots-a soil zymography analysis. Plant Soil. 379:67–77. doi: 10.1007/s11104-014-2041-9
  • Sradnick A, Murugan R, Oltmanns M, Raupp J, Joergensen RG. 2013. Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer. Appl Soil Ecol. 63:23–28. doi: 10.1016/j.apsoil.2012.09.011
  • Stursova M, Sinsabaugh RL. 2008. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol Biochem. 40:550–553. doi: 10.1016/j.soilbio.2007.09.002
  • Tabatabai MA. 1994. Soil enzymes. In: RW Weaver, JS Angle, PS Bottomley, editors. Methods of soil analysis: part 2-microbiological and biochemical properties. Madison: Soil Science Society of America; p. 775–833.
  • Venkatesan S, Senthurpandian VK. 2006. Comparison of enzyme activity with depth under tea plantations and forested sites in south India. Geoderma. 137:212–216. doi: 10.1016/j.geoderma.2006.08.011
  • Walkley AJ, Blank IA. 1933. An examination of degradation method for determining soil organic matter: A proposed modification of the chromic acid titration method. Soil Sci. 37:29–38. doi: 10.1097/00010694-193401000-00003
  • Wang XH, Hu M, Xia Y, Wen XH, Ding K. 2012. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol. 78:7042–7047. doi: 10.1128/AEM.01617-12
  • Wang ZL. 2005. The change analyses of the forest resource in Daxinganling. Forest By Product and Speciality in China. 3:61–62.
  • Wieland G, Neumann R, Backhaus H. 2001. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microb. 67:5849–5854. doi: 10.1128/AEM.67.12.5849-5854.2001
  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology. 84:2042–2050. doi: 10.1890/02-0433
  • Zelles L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils. 29:111–129. doi: 10.1007/s003740050533
  • Zhang B, Deng H, Wang HL, Yin R, Hallett PD, Griffiths BS, Daniell TJ. 2010. Does microbial habitat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil? Soil Biol Biochem. 42:850–859. doi: 10.1016/j.soilbio.2010.02.004
  • Zhang B, Wang H, Yao S, Bi L. 2013. Litter quantity confers soil functional resilience through mediating soil biophysical habitat and microbial community structure on an eroded bare land restored with mono Pinus massoniana. Soil Biol Biochem. 57:556–567. doi: 10.1016/j.soilbio.2012.07.024
  • Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ. 2014. An integrated study to analyze soil microbial community structure and metabolic potential in Two forest types. Plos One. 9:e93773. doi: 10.1371/journal.pone.0093773
  • Zhou J, Zhou X, Li Y, Xing J. 2015. Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing. J Hazard Mater. 295:176–184. doi: 10.1016/j.jhazmat.2015.04.010
  • Zul D, Denzel S, A, Overmann J. 2007. Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: implications for the determinants of bacterial diversity. Appl Environ Microb. 73:6916–6929. doi: 10.1128/AEM.01533-07

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.