312
Views
4
CrossRef citations to date
0
Altmetric
Articles

Long-term dynamics of leaf and root decomposition and nitrogen release in a grey alder (Alnus incana (L.) Moench) and silver birch (Betula pendula Roth.) stands

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 12-25 | Received 15 Feb 2018, Accepted 03 Sep 2018, Published online: 22 Sep 2018

References

  • Ågren G, Bosatta E. 1996. Theoretical ecosystem ecology: understanding element cycles. Cambridge: Cambridge University press.
  • Aosaar J, Mander Ü, Varik M, Becker H, Morozov G, Maddison M, Uri V. 2016. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula Roth.) stand in Estonia. Silva Fenn. 50(4):1–19. doi: 10.14214/sf.1628
  • Aosaar J, Varik M, Lõhmus K, Ostonen I, Becker H, Uri V. 2013. Long-term study of above- and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land. Eur J For Res. 132:737–749. doi: 10.1007/s10342-013-0706-1
  • Aosaar J, Varik M, Uri V. 2012. Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: a review. Biomass Bioenerg. 45:11–26. doi: 10.1016/j.biombioe.2012.05.013
  • Asplund J, Hustoft E, Nybakken L, Ohlson M, Lie MH. 2017. Litter impair spruce seedling emergence in beech forests: a litter manipulation experiment. Scand J Forest Res. 33(4):332–337. doi: 10.1080/02827581.2017.1388440
  • Bayer EA, Shoham Y, Lamed R. 2013. Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes. Berlin: Springer; p. 215–266.
  • Berg B. 1984. Decomposition of root litter and some factors regulating the process: long-term root litter decomposition in a Scots pine forest. Soil Biol Biochem. 16:609–617. doi: 10.1016/0038-0717(84)90081-6
  • Berg B. 1986. Nutrient release from litter and humus in coniferous forest soils – a mini-review. Scand J Forest Res. 1:350–369.
  • Berg B. 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 133(1–2):13–22. doi: 10.1016/S0378-1127(99)00294-7
  • Berg B, Staaf H. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol Bull. 33:163–178.
  • Berg B, Wessen B, Ekbohm G. 1982. Nitrogen level and lignin decomposition in Scots pine needle litter. Oikos. 38:291–296. doi: 10.2307/3544667
  • Bloomfield J, Vogt KA, Vogt DJ. 1993. Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo experimental forest, Puerto Rico. Plant Soil. 150:233–245. doi: 10.1007/BF00013020
  • Bocock KL. 1963. The digestion and assimilation of food by Glomeris marginata. In: Doeksen J, Van der Drift J, editors. Soil organisms. Amsterdam: North Holland Publishing; p. 85–91.
  • Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 320:1444–1449. doi: 10.1126/science.1155121
  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, et al. 2013. Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil. 362(1–2):357–372. doi: 10.1007/s11104-012-1313-5
  • Brunner I, Godbold DL. 2007. Tree roots in a changing world. J For Res. 12(2):78–82. doi: 10.1007/s10310-006-0261-4
  • Camiré C, Côté B, Brulotte S. 1991. Decomposition of roots of black alder and hybrid poplar in short-rotation plantings: Nitrogen and lignin control. Plant Soil. 138(1):123–132. doi: 10.1007/BF00011814
  • Chamier AC. 1987. Effect of pH on microbial degradation of leaf litter in seven streams of the English Lake District. Oecologia. 71:491–500. doi: 10.1007/BF00379287
  • Coûteaux MM, Bottner P, Berg B. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol. 10(2):63–66. doi: 10.1016/S0169-5347(00)88978-8
  • Crawley MJ. 2007. The R book. Hoboken (NJ): John Wiley & Sons Ltd.
  • Dilly O, Munch JC. 1996. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Soil Biol Biochem. 28:1073–1081. doi: 10.1016/0038-0717(96)00075-2
  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science. 263:185–190. doi: 10.1126/science.263.5144.185
  • Dornbush ME, Isenhart TM, Raich JW. 2002. Quantifying fine-root decomposition: an alternative to buried litterbags. Ecology. 83:2985–2990. doi: 10.1890/0012-9658(2002)083[2985:QFRDAA]2.0.CO;2
  • Edwards CA, Bohlen PJ. 1996. Biology and ecology of earthworms. 3rd ed. London: Chapman & Hall.
  • Erkan N, Comez A, Aydin AC, Denli O, Erkan S. 2018. Litterfall in relation to stand parameters and climatic factors in Pinus brutia forests in Turkey. Scand J Forest Res. 33(4):338–346. doi: 10.1080/02827581.2017.1406135
  • Estonian Weather Service. 2017. Weather observation data for Estonia. [accessed 2017 May 13]. http://www.ilmateenistus.ee/?lang = en/.
  • Fan P, Guo D. 2010. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia. 163:509–515. doi: 10.1007/s00442-009-1541-4
  • Fang H, Mo J, Peng S, Li Z, Wang H. 2007. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil. 297(1–2):233–242. doi: 10.1007/s11104-007-9339-9
  • Fisk MC, Fahey TJ, Sobieraj JH, Costello AM. 2011. Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil. 341:279–293. doi: 10.1007/s11104-010-0643-4
  • Goebel M, Hobbie SE, Bulaj B, Zadworny M, Archibald DD, Oleksyn J, Reich PB, Eissenstat DM. 2011. Decomposition of the finest root branching orders: linking belowground dynamics to fine-root function and structure. Ecol Monogr. 81:89–102. doi: 10.1890/09-2390.1
  • Granhall U. 1994. Biological fertilization. Biomass Bioenerg. 6:81–91. doi: 10.1016/0961-9534(94)90087-6
  • Grüneberg E, Ziche D, Wellbrock N. 2014. Organic carbon stocks and sequestration rates of forest soils in Germany. Glob Change Biol. 20:2644–2662. doi: 10.1111/gcb.12558
  • Hopkins DW, Ibrahim DM, O'Donnell A, Shiel R. 1990. Decomposition of cellulose, soil organic matter and plant litter in a temperate grassland soil. Plant Soil. 124(1):79–85. doi: 10.1007/BF00010934
  • Horodecki P, Jagodziński AM. 2017. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. Forest Ecol Manag. 406:1–11. doi: 10.1016/j.foreco.2017.09.059
  • Howard PJA, Howard DM. 1974. Microbial decomposition of tree and shrub leaf litter. Oikos. 25:341–352. doi: 10.2307/3543954
  • Hynynen J, Niemistö P, Viherä-Aarnio A, Brunner A, Hein S, Velling P. 2010. Silviculture of birch (Betula pendula Roth. and Betula pubescens Ehrh.) in Northern Europe. Forestry. 83(1):103–119. doi: 10.1093/forestry/cpp035
  • Hytönen J, Saarsalmi A. 2009. Long-term biomass production and nutrient uptake of birch, alder and willow plantations on cut-away peatland. Biomass Bioenerg. 33:1197–1211. doi: 10.1016/j.biombioe.2009.05.014
  • Ivask M, Truu J. 1998. The relationship of Estonian earthworms to local habitat and soil factors. Pedobiologia. 42:378–384.
  • Kavvadias VA, Alifragis D, Tsiontsis A, Brosfas G, Stamatelos G. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecol Manag. 144:113–127. doi: 10.1016/S0378-1127(00)00365-0
  • Keyes MR, Grier CC. 1981. Above- and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J Forest Res. 11:599–605. doi: 10.1139/x81-082
  • Krueger I, Schulz C, Borken W. 2017. Stocks and dynamics of soil organic carbon and coarse woody debris in three managed and unmanaged temperate forests. Eur J For Res. 136:123–137. doi: 10.1007/s10342-016-1013-4
  • Lavelle P, Blanchart E, Martin A, Martin S, Spain A. 1993. A hierarchical model for decomposition in terrestrial ecosystems: application to soils in the humid tropics. Biotropica. 25(2):130–150. doi: 10.2307/2389178
  • Lecerf A. 2017. Methods for estimating the effect of litterbag mesh size on decomposition. Ecol Model. 362:65–68. doi: 10.1016/j.ecolmodel.2017.08.011
  • Li A, Fahey TJ, Pawlowska TE, Fisk MC, Burtis J. 2015. Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biol Biochem. 83:76–83. doi: 10.1016/j.soilbio.2015.01.019
  • Lõhmus K, Ivask M. 1995. Decomposition and nutrient dynamics of fine roots of Norway spruce (Picea abies (L.) Karst.) at different sites. Plant Soil. 168/169:89–94. doi: 10.1007/BF00029317
  • Lõhmus K, Kuusemets V, Ivask M, Teiter S, Augustin J, Mander Ü. 2002. Budgets of nitrogen fluxes in riparian grey alder forests. Arch Hydrobiol. 141:321–332.
  • Lõhmus K, Truu M, Truu J, Ostonen I, Kaar E, Vares A, Uri V, Alama S, Kanal A. 2006. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale areas. Plant Soil. 283:1–10. doi: 10.1007/s11104-005-2509-8
  • Lovett GM, Weathers KC, Arthur MA, Schultz JC. 2004. Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry. 67(3):289–308. doi: 10.1023/B:BIOG.0000015786.65466.f5
  • Maloney DC, Lamberti GA. 1995. Rapid decomposition of summer-input leaves in a northern Michigan stream. Am Midl Nat. 133:184–195. doi: 10.2307/2426360
  • Mander Ü, Kuusemets V, Ivask M. 1995. Nutrient dynamics of riparian ecotones: a case study from the Porijõgi River catchments. Landscape Urban Plan. 31(1–3):333–348. doi: 10.1016/0169-2046(94)01061-C
  • McClaugherty CA, Aber JD, Melillo JM. 1984. Decomposition dynamics of fine roots in forested ecosystems. Oikos. 42:378–386. doi: 10.2307/3544408
  • McClaugherty C, Berg B. 1987. Cellulose, lignin and nitrogen levels as rate regulating factors in late stages of forest litter decomposition. Pedobiologia. 30:101–112.
  • Meentemeyer V, Berg B. 1986. Regional variation in rate of mass loss of Pinus sylvestris needle litter in Swedish pine forests as influenced by climate and litter quality. Scand J Forest Res. 1:167–180. doi: 10.1080/02827588609382409
  • Meyer A, Tarvainen L, Nousratpour A, Björk RG, Ernfors M, Grelle A, Klemedtsson ÅK, Lindroth A, Räntfors M, Rütting T, et al. 2013. A fertile peatland forest does not constitute a major greenhouse gas sink. Biogeosciences. 10:7739–7758. doi: 10.5194/bg-10-7739-2013
  • Mikola P. 1958. Liberation of nitrogen from alder leaf litter. Acta Forestal Fenn. 67(1):1–10.
  • Ormerod SJ, Rundle SD, Lloyd EC, Douglas AA. 1993. The influence of riparian management on the habitat structure and macroinvertebrate communities of upland streams draining plantation forests. J Appl Ecol. 30:13–24. doi: 10.2307/2404266
  • Palviainen M, Finér L. 2015. Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecol Manag. 358:1–11. doi: 10.1016/j.foreco.2015.08.036
  • Palviainen M, Finér L, Kurka AM, Mannerkoski H, Piirainen S, Starr M. 2004. Decomposition and nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant Soil. 263(1):53–67. doi: 10.1023/B:PLSO.0000047718.34805.fb
  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world's forests. Science. 333(6045):988–993. doi: 10.1126/science.1201609
  • Peng Y, Thomas SC, Dalung T. 2008. Forest management and soil respiration: implications for carbon sequestration. Environ Rev. 16:93–111. doi: 10.1139/A08-003
  • Persson HA. 1978. Root dynamics in a young scots pine stand in central Sweden. Oikos. 30:508–519. doi: 10.2307/3543346
  • Persson HA. 1983. The distribution and productivity of fine roots in boreal forests. Plant Soil. 71:87–101. doi: 10.1007/BF02182644
  • Persson H. 1979. Fine-root production, mortality and decomposition in forest ecosystems. Vegetatio. 41:101–109. doi: 10.1007/BF00121422
  • Persson T, Bååth E, Clarholm M, Lundkvist H, Söderström B, Sohlenius B. 1980. Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a scots pine forest. Ecol Bull. 32:419–459.
  • Prescott CE. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry. 101:133–149. doi: 10.1007/s10533-010-9439-0
  • Püttsepp Ü, Lõhmus K, Koppel A. 2007. Decomposition of fine roots and α-cellulose in a short rotation willow (Salix spp.) plantation on abandoned agricultural land. Silva Fenn. 41(2):247–258. doi: 10.14214/sf.294
  • Rytter L. 1990. Biomass and nitrogen dynamics of intensively grown grey alder plantations on peatland [dissertation]. Uppsala: Swedish University of Agricultural Sciences.
  • Rytter L. 1995. Effects of thinning on the obtainable biomass, stand density, and tree diameters of intensively grown grey alder plantations. Forest Ecol Manage. 73:133–143. doi: 10.1016/0378-1127(94)03498-L
  • Rytter L. 1996. The potential of grey alder plantation forestry. In: Perttu K, Koppel A, editors. Short rotation willow coppice for renewable energy and improved environment. Uppsala: Swedish University of Agricultural Sciences; p. 89–94.
  • Rytter RM. 2013. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis. Tree Physiol. 33:924–939. doi: 10.1093/treephys/tpt060
  • Rytter L, Rytter RM. 2016. Growth and carbon capture of grey alder (Alnus incana (L.) Moench.) under North European conditions – estimates based on reported research. Forest Ecol Manag. 373:56–65. doi: 10.1016/j.foreco.2016.04.034
  • Saarsalmi A. 1995. Nutrition of deciduous tree species grown in short rotation stands [dissertation]. University of Joensuu.
  • Scott NA, Binkley D. 1997. Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologica. 111(2):151–159. doi: 10.1007/s004420050219
  • Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate the litter quality effects. Oecologia. 129:407–419. doi: 10.1007/s004420100740
  • Šlapokas T, Granhall U. 1991a. Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biol Fert Soils. 10:241–248. doi: 10.1007/BF00337374
  • Šlapokas T, Granhall U. 1991b. Decomposition of litter in fertilized short-rotation forests on a low-humidified peat bog. Forest Ecol Manag. 41(1-2):143–165. doi: 10.1016/0378-1127(91)90125-F
  • Starr M, Saarsalmi A, Hokkanen T, Merilä P, Helmisaari HS. 2004. Models of litterfall production for scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors. Forest Ecol Manag. 205(1–3):215–225. doi: 10.1016/j.foreco.2004.10.047
  • Sun T, Dong L, Zhang L, Wu Z, Wang Q, Li Y, Zhang H, Wang Z. 2016. Early stage fine-root decomposition and its relationship with root order and soil depth in a Larix Gmelinii plantation. Forests. 7(10):234. doi: 10.3390/f7100234
  • Sun T, Mao Z, Dong L, Hou Y, Wang X. 2013. Further evidence for slow decomposition of very fine roots using two methods: litterbags and intact cores. Plant Soil. 366:633–646. doi: 10.1007/s11104-012-1457-3
  • Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Studies in ecology, Vol. 3. Berkeley/Los Angeles: Blackwell Scientific/University of California Press.
  • Taylor BR, Parkinson D, Parsons WFJ. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology. 70:97–104. doi: 10.2307/1938416
  • Tian G, Kang BT, Brussaard L. 1992. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions – decomposition and nutrient release. Soil Biol Biochem. 24(10):1051–1060. doi: 10.1016/0038-0717(92)90035-V
  • Tripathi SK, Singh KP. 1992. Nutrient immobilization and release patterns during plant decomposition in a dry tropical bamboo savanna, India. Biol Fert Soils. 14(3):191–199. doi: 10.1007/BF00346060
  • Tripathi SK, Sumida A, Shibata H, Ono K, Uemura S, Kodama Y, Hara T. 2006. Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in Northern Japan. Biol Fert Soils. 43:237–246. doi: 10.1007/s00374-006-0100-y
  • Uri V, Aosaar J, Varik M, Becker H, Ligi K, Padari A, Kanal A, Lõhmus K. 2014. The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. Forest Ecol Manag. 327:106–117. doi: 10.1016/j.foreco.2014.04.040
  • Uri V, Kukumägi M, Aosaar J, Varik M, Becker H, Morozov G, Karoles K. 2017a. Ecosystems carbon budgets of differently aged downy birch stands growing on well-drained peatlands. Forest Ecol Manag. 399:82–93. doi: 10.1016/j.foreco.2017.05.023
  • Uri V, Kukumägi M, Aosaar J, Varik M, Becker H, Soosaar K, Morozov G, Ligi K, Padari A, Ostonen I, Karoles K. 2017b. Carbon budgets in fertile grey alder (Alnus incana (L.) Moench.) stands of different ages. Forest Ecol Manag. 396:55–67. doi: 10.1016/j.foreco.2017.04.004
  • Uri V, Lõhmus K, Kiviste A, Aosaar J. 2009. The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forestry. 82(1):61–74. doi: 10.1093/forestry/cpn040
  • Uri V, Lõhmus K, Kund M, Tullus H. 2008. The effect of land use type on net nitrogen mineralization on abandoned agricultural land: silver birch stand versus grassland. Forest Ecol Manag. 255(1):226–233. doi: 10.1016/j.foreco.2007.09.019
  • Uri V, Lõhmus K, Mander Ü, Ostonen I, Aosaar J, Maddison M, Helmisaari HS, Augustin J. 2011. Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land. Ecol Eng. 37(6):920–930. doi: 10.1016/j.ecoleng.2011.01.016
  • Uri V, Lõhmus K, Ostonen I, Tullus H, Lastik R, Vildo M. 2007. Biomass production, foliar and root characteristics and nutrient accumulation in young silver birch (Betula pendula Roth.) stand growing on abandoned agricultural land. Eur J For Res. 126(4):495–506. doi: 10.1007/s10342-007-0171-9
  • Uri V, Tullus H, Lohmus K. 2002. Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forest Ecol Manag. 161:169–179. doi: 10.1016/S0378-1127(01)00478-9
  • Van Vuuren MMI, Berendse F, De Visser W. 1993. Species and site differences in the decomposition of litters and roots from wet heathlands. Can J Botany. 71:167–173. doi: 10.1139/b93-019
  • Vares A. 2001. Sanglepa (Alnus glutinosa (L.) Gaertn.) lehevarise lagunemine ja lämmastiku dünaamika Eesti kliimatingimustes [Decomposition and nitrogen dynamics in black alder (Alnus glutinosa (L.) Gaertn.) leaf litter in the climatic conditions in Estonia]. Metsanduslikud uurimused. 35:149–155. Estonian.
  • Varik M, Aosaar J, Ostonen I, Lõhmus K, Uri V. 2013. Carbon and nitrogen accumulation in belowground tree biomass in a chronosequence of silver birch stands. Forest Ecol Manag. 302:62–70. doi: 10.1016/j.foreco.2013.03.033
  • Varik M, Kukumägi M, Aosaar J, Becker H, Ostonen I, Lõhmus K, Uri V. 2015. Carbon budgets in fertile silver birch (Betula pendula Roth) chronosequence stands. Ecol Eng. 77:284–296. doi: 10.1016/j.ecoleng.2015.01.041
  • Vogt KA, Grier CC, Gower ST, Sprugel DG, Vogt DJ. 1986. Overestimation of net root production: a real or imaginary problem? Ecology. 67:577–579. doi: 10.2307/1938601
  • Vogt KA, Grier CC, Meier CE, Keyes MR. 1983. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in Western Washington, as affected by fine-root input. Ecol Monogr. 53(2):139–157. doi: 10.2307/1942492
  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil. 187:159–219. doi: 10.1007/BF00017088
  • Waksman SA. 1952. Soil microbiology. New York: Wiley.
  • Whitford WG, Stinnett K, Anderson J. 1988. Decomposition of roots in a Chihuahuan desert ecosystem. Oecologia. 75:8–11. doi: 10.1007/BF00378807
  • Xiong Y, Fan P, Fu S, Zeng H, Guo D. 2013. Slow decomposition and limited nitrogen release by lower order roots in eight Chinese temperate and subtropical trees. Plant Soil. 363:19–31. doi: 10.1007/s11104-012-1290-8
  • Yearbook Forest. 2016. Compiled by Estonian Environmental Information Centre. Tartu 2017. In Estonian. [accessed 2017 Nov 4]. http://www.keskkonnaagentuur.ee/sites/default/files/mets2016_08.08.pdf.
  • Zhou Z, Shangguan Z. 2007. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. forest of the Loess Plateau of China. Plant Soil. 291:119–129. doi: 10.1007/s11104-006-9179-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.