2,831
Views
10
CrossRef citations to date
0
Altmetric
Articles

Regional effects of a green steel industry – fuel substitution and feedstock competition

ORCID Icon

References

  • Asmoarp V, Davidsson A. 2016. Skogsbrukets transporter 2014 [Forestry transports 2014]. Skogforsk; [cited 2017 Nov]. Available from: https://www.skogforsk.se/kunskap/kunskapsbanken/2016/skogsbrukets-transporter-2014/.
  • Bioenergi. 2017. Pellets i Sverige [Pellets in Sweden]; [cited 2017 Dec]. https://bioenergitidningen.se/e-tidning-kartor/pelletskartan.
  • Bolkesjø TF. 2004. Modeling supply, demand and trade in the Norwegian forest sector. Ǻs: Agricultural University of Norway.
  • Bolkesjø TF. 2005. Projecting Pulpwood Prices under Different Assumptions on Future Capacities in the Pulp and Paper Industry. Silva Fennica. 39(1):103–116.
  • Bolkesjø TF, Trømborg E, Solberg B. 2005. Increasing forest conservation in Norway: consequences for timber and forest products market. Environ Resour Econ. 41:95–115. doi: 10.1007/s10640-004-8248-0
  • Buongiorno J. 1996. Forest sector modeling: a synthesis of econometrics, mathematical programming, and system dynamics methods. Int J Forecast. 12(3):329–343. doi: 10.1016/0169-2070(96)00668-1
  • Carlsson M. 2012. Bioenergy from the Swedish forest sector. Uppsala: Swedish University of Agricultural Sciences.
  • Caurla S, Garcia S, Niedzwiedz A. 2015. Store or export? An economic evaluation of financial compensation to forest sector after windstorm. The case of Hurricane Klaus. Forest Policy Econ. 61(Supplement C):30–38. doi: 10.1016/j.forpol.2015.06.005
  • Child M. 2014. Industrial-scale hydrothermal carbonization of waste sludge materials for fuel production. Lappeenranta: Lappeenranta University of Technology.
  • EI. 2017. Fjärrvärmekollen [District heating auditing]. Swedish Energy Markets Inspectorate; [cited 2018 May]. Available from: http://ei.se/sv/start-fjarrvarmekollen/.
  • Ejdemo T, Söderholm P, Ylinenpää H. 2014. Norrbottens roll i samhällsekonomin – En kritisk granskning av indikatorer samt några lärdomar för framtiden [Norrbotten County's role in the economy]. Länsstyrelsen i Norrbotten.
  • FFI. 2017. Statistics. Finnish Forest Industries; [cited 2018 May]. Available from: https://www.forestindustries.fi.
  • Hazell PBR, Norton RD. 1986. Mathematical programming for economic analysis in agriculture. New York (NY): Macmillan. rBiological Resource Management.
  • Johansson MT. 2016. Effects on global CO2 emissions when substituting LPG with bio-SNG as fuel in steel industry reheating furnaces – the impact of different perspectives on CO2 assessment. Energy Efficiency. 9(6):1437–1445. doi: 10.1007/s12053-016-9432-0
  • JTI. 2013. Exempel på bränsledata för olika bränslen [Fuel data for different fuels]. Swedish Institute of Agricultural and Environmental Engineering; [cited 2017 Nov]. Available from: http://www.bioenergiportalen.se/?p=1590.
  • Kallio AM, Dykstra DP, Binkley CS. 1987. The global forest sector: an analytical perspective. Chichester (UK): John Wiley & Sons. IIASA.
  • Kallio AM, Hänninen R, Vainikainen N, Luque S. 2008. Biodiversity value and the optimal location of forest conservation sites in Southern Finland. Ecological Economics (67): 232–243.
  • Kangas H-L, Lintunen J, Pohjola J, Hetemäki L, Uusivuori J. 2011. Investments into forest biorefineries under different price and policy structures. Energy Econ. 33:1165–1176. doi: 10.1016/j.eneco.2011.04.008
  • Korhonen K-M. 2015. Introduction to the forestry in lapland; [cited 2017 Oct]. Available from: http://www.metsa.fi/documents/10739/4144441/Introduction+to+the+Forestry+in+Lapland100615.pdf/4f64cf6e-b751-4ebc-bf5b-8f4a2d21ac9c.
  • Larsson M, Anheden M, Uhlir L. 2014. Roadmap 2015 to 2025 Biofuels for low-carbon steel industry. Gothenburg. Research Institutes of Sweden.
  • Latta GS, Sjølie HK, Solberg B. 2013. A review of recent developments and applications of partial equilibrium models of the forest sector. J Forest Econ. 19(4):350–360. doi: 10.1016/j.jfe.2013.06.006
  • Lecocq F, Caurla S, Delacote P, Barkaoui A, Sauquet A. 2011. Paying for forest carbon or stimulating fuelwood demand? Insights from the French forest sector model. J Forest Econ. 17(2):157–168. doi: 10.1016/j.jfe.2011.02.011
  • Lestander D. 2011. Competition for forest fuels in Sweden – exploring the possibilities of modeling forest fuel markets in a regional partial equilibrium framework. Uppsala: Swedish University of Agricultural Sciences.
  • LUKE. 2017. Statistics database. Natural Resources Institute Finland ; [cited 2017 Nov]. Available from: http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/?rxid=aefb4d14-6df8-4981-a304-01c37a46d087.
  • Mandova H, Leduc S, Wang C, Wetterlund E, Patrizio P, Gale W, Kraxner F. 2018. Possibilities for CO2 emission reduction using biomass in European integrated steel plants. Biomass Bioenergy. 115:231–243. doi: 10.1016/j.biombioe.2018.04.021
  • Mefos S, editor. 2017. Grön Masugn – Fokus biomassa [Green blast furnace – focus biomass] Grön Masugn workshop; Luleå.
  • Metla. 2014. Statistical Yearbook of Forestry. Vantaa. Finnish Forest Reseach Institute.
  • Mousa E, Wang C, Riesbeck J, Larsson M. 2014. Biomass applications in iron and steel industry: an overview of challenges and opportunities. Renew Sust Energy Rev. 65:1247–1266. doi: 10.1016/j.rser.2016.07.061
  • Mustapha W. 2016. The Nordic forest sector model (NFSM): data and Model Structure. INA fagrapport 38.
  • Mustapha W, Trømborg E, Bolkesjø TF. 2017. Forest-based biofuel production in the Nordic countries: modelling of optimal allocation. Forest Policy Econ.
  • Northway S, Bull GQ, Nelson JD. 2013. Forest sector partial equilibrium models: processing components. Forest Sci. 59(2):151–156. doi: 10.5849/forsci.11-156
  • Novator. 2006. Fakta om biobränsle [Fact about biofuels]; [cited 2017 Oct]. Available from: http://www.novator.se/bioenergy/facts/fakta-1.html.
  • Nwachukwu C, Toffolo A, Wang C, Grip C-E, Wetterlund E. 2018. Systems analysis of sawmill by-products gasification towards a bio-based steel production. International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental impact of Energy Systems Guimaraes, Portugal.
  • Olofsson E. 2018. An introduction to the Norrbotten County forest sector model – technical report for a regional partial equilibrium model.
  • Olofsson E, Lundmark R. 2018. Competition in the forest sector: an extensive review. Swedish Association for Energy Economics (SAEE) conference 2016, Luleå, Augt 23–24 2016.
  • Olsson A, Lundmark R. 2014. Modelling the competition for forest resources: The case of Sweden. J Energy Nat Resour. 3(2):11–19. doi: 10.11648/j.jenr.20140302.11
  • Riksdag S. 2015. Avståndsbaserad vägslitageskatt för tunga lastbilar [Distance based road wear tax for heavy trucks]; [cited 2017 Dec]. Available from: https://www.riksdagen.se/sv/dokument-lagar/dokument/kommittedirektiv/avstandsbaserad-vagslitageskatt-for-tunga_H3B147.
  • Selkimäki M, Röser D. 2009. Pellet logistics and transportationof raw materials in Finland. PELLETime. Vantaa. Metla.
  • SEPA. 2017a. Utsläpp av växthusgaser från industri [Emissions of greenhouse gases from industry]. Swedish Environmental Protection Agency ; [cited 2017 Nov 29]. Available from: http://www.naturvardsverket.se/Sa-mar-miljon/Statistik-A-O/Vaxthusgaser-utslapp-fran-industrin.
  • SEPA. 2017b. Sverige halvvägs till klimatetappmålet för år 2030 [Sweden halfway to the climate target for the year 2030]. Swedish Environmental Protection Agency – Naturvårdsverket ; [cited 2017 Dec 12]. Available from: https://www.miljomal.se/Aktuellt/Alla-nyheter/Sverige-halvvags-till-klimatetappmalet-for-ar-2030/.
  • SFA. 2014. Skogsstatistisk årsbok 2014 – Swedish statistical yearbook of forestry. Swedish Forest Agency.
  • SFIF. 2017. Member-map. Swedish Forest Industries Federation; [cited 2018 May]. Available from: http://www.forestindustries.se/about-us/our-members/member-map/.
  • Suopajärvi H, Fabritius T. 2013. Towards more sustainable ironmaking – an analysis of energy wood availability in Finland and the economics of charcoal production. Sustainability. 5:1188–1207. doi: 10.3390/su5031188
  • Suopajärvi H, Kemppainen A, Haapakangas J, Fabritius T. 2017. Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes. J Clean Prod. 148(Supplement C):709–734. doi: 10.1016/j.jclepro.2017.02.029
  • Toppinen A, Kuuluvainen J. 2010. Forest sector modelling in Europe – the state of the art and future research directions. Forest Policy Econ. 12(1):2–8. doi: 10.1016/j.forpol.2009.09.017
  • Trømborg E, Bolkesjø TF, Solberg B. 2007. Impacts of policy means for increased use of forest-based bioenergy in Norway – a spatial partial equilibrium analysis. Energy Policy. 35(12):5980–5990. doi: 10.1016/j.enpol.2007.08.004
  • Trømborg E, Bolkesjø TF, Solberg B. 2013. Second-generation biofuels: impacts on bioheat production and forest products markets. Int J Energy Sect Manag. 7(3):383–402. English. doi: 10.1108/IJESM-03-2013-0001
  • Wang C, Mellin P, Lövgren J, Nilsson L, Yang W, Salman H, Hultgren A, Larsson M. 2015. Biomass as blast furnace injectant – Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag. 102:217–226. doi: 10.1016/j.enconman.2015.04.013
  • Wei W, Mellin P, Yang W, Wang C, Hultgren A, Salman H. 2013. Utilization of biomass for blast furnace in Sweden: biomass availability and upgrading technologies. Stockholm. Report I:1. 978-91-7501-989-5.