330
Views
0
CrossRef citations to date
0
Altmetric
Articles

Predicting stem taper using artificial neural network and regression models for Scots pine (Pinus sylvestris L.) in northwestern Türkiye

ORCID Icon
Pages 97-104 | Received 21 Jul 2022, Accepted 04 Mar 2023, Published online: 22 Mar 2023

References

  • Aggarwal CC. 2018. Neural networks and deep learning: a textbook. Cham, Switzerland: Springer. ISBN 978-3-319-94462-3.
  • Alkan O, Özçelik R. 2020. Stem taper equations for diameter and volume predictions of Abies cilicica Carr. in the Taurus Mountains, Turkey. J Mt Sci. 17(12):3054–3069.
  • Bayat M, Ghorbanpour M, Zare R, Jaafari A, Pham BT. 2019. Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran. Comput Electron Agric. 164:104929.
  • Bolat F, Ercanlı İ, Günlü A. 2023. Yield of forests in Ankara Regional Directory of Forestry in Turkey: comparison of regression and artificial neural network models based on statistical and biological behaviors. iForest. 16(1):30–37.
  • Burkhart HE, Tomé M. 2012. Modeling forest trees and stands. Dordrecht: Springer; p. 457.
  • Cao QV. 2017. Evaluation of methods for modeling individual tree survival. For Sci. 63(4):356–361.
  • Casas GG, Gonzáles DGE, Villanueva JRB, Fardin LP, Leite HG. 2022. Configuration of the deep neural network Hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. In the Peruvian Amazon. Forests. 13(5):697.
  • Castaño-Santamaría J, Crecente-Campo F, Fernández-Martínez JL, Barrio-Anta M, Obeso JR. 2013. Tree height prediction approaches for uneven-aged beech forests in northwestern Spain. For Ecol Manag. 307:63–73.
  • Cervera JM. 1973. El área basimétrica reducida, el volume reducido y el perfil. Montes. 174:415–418. (In Spanish).
  • Diamantopoulou MJ, Milios E. 2010. Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models. Biosystems Eng. 105(3):306–315.
  • Diamantopoulou MJ, Milios E, Doganos D, Bistinas I. 2009. Artificial neural network modeling for reforestation design through the dominant trees bole-volume estimation. Nat Resour Model. 22(4):511–543.
  • Diamantopoulou MJ, Özçelik R. 2012. Evaluation of different modeling approaches for total tree-height estimation in Mediterranean Region of Turkey. For Syst. 21(3):383–397.
  • Diamantopoulou MJ, Özçelik R, Crecente-Campo F, Eler Ü. 2015. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosystems Eng. 133:33–45.
  • Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Rojo A. 2006. Compatible taper function for Scots pine plantations in northwestern Spain. Can J For Res. 36(5):1190–1205.
  • Ercanlı İ. 2020. Artificial intelligence with deep learning algorithms to model relationships between total tree height and diameter at breast height. For Syst. 29(2), e013-e013.
  • Ercanlı İ, Günlü A, Şenyurt M, Keleş S. 2018. Artificial neural network models predicting the leaf area index: a case study in pure even-aged Crimean pine forests from Turkey. For Ecosyst. 5:1–12.
  • Fang Z, Borders BE, Bailey RL. 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For Sci. 46(1):1–12.
  • Fonweban J, Gardiner B, Macdonald E, Auty D. 2011. Taper functions for Scots pine (Pinus sylvestris L.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in northern Britain. Forestry. 84(1):49–60.
  • GDF. 2021. Forestry statistics 2021. Ankara, Turkey: General Directorate of Forestry Publications.
  • Giuggiola A, Kuster TM, Saha S. 2010. Drought-induced mortality of Scots pines at the southern limits of its distribution in Europe: causes and consequences. iForest. 3(4):95.
  • Gomez-Garcia E, Diéguez-Aranda U, Özçelik R, Sal-Cando M, Castedo-Dorado F, Crecente-Campo F, Corral-Rivas JJ, Arias-Rodil M. 2016. Development of a stem taper function using mixed-effects models for Pinus sylvestris in Turkey: selection of fixed parameters to expand. Bosque. 37(1):159–167.
  • Hamedianfar A, Mohamedou C, Kangas A, Vauhkonen J. 2022. Deep learning for forest inventory and planning: a critical review on the remote sensing approaches so far and prospects for further applications. Forestry. 95(4):451–465.
  • Huang J, Gao G, Guo F. 2012. Forest growth simulation based on artificial neural network. In: Qian Z, Cao L, Su W, Wang T, Yang H, editors. Recent advances in computer science and information engineering. Berlin, Heidelberg: Springer; p. 657–663.
  • Kozak A. 2004. My last words on taper equations. For Chron. 80(4):507–515.
  • Kucuk O, Sevinc V. 2023. Fire behavior prediction with artificial intelligence in thinned black pine (Pinus nigra Arnold) stand. For Ecol Manag. 529:120707.
  • Leite HG, da Silva MLM, Binoti DHB, Fardin L, Takizawa FH. 2011. Estimation of inside-bark diameter and heartwood diameter for Tectona grandis Linn. trees using artificial neural networks. Eur J For Res. 130(2):263–269.
  • Li R, Weiskittel AR. 2010. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Ann For Sci. 67(3):302.
  • McTague JP, Weiskittel A. 2021. Evolution, history, and use of stem taper equations: a review of their development, application, and implementation. Can J For Res. 51(2):210–235.
  • Nunes MH, Görgens EB. 2016. Artificial intelligence procedures for tree taper estimation within a complex vegetation mosaic in Brazil. PloS one. 11(5):e0154738.
  • Özçelik R, Brooks JR. 2012. Compatible volume and taper models for economically important tree species of Turkey. Ann For Sci. 69(1):105–118.
  • Özçelik R, Cao QV. 2017. Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. For Sci. 63(4):349–355.
  • Özçelik R, Crecente-Campo F. 2016. Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus mountains, Southern Turkey. For Sci. 62(1):78–91.
  • Özçelik R, Diamantopoulou MJ, Brooks JR. 2014. The use of tree crown variables in over-bark diameter and volume prediction models. iForest. 7(3):132.
  • Özçelik R, Diamantopoulou MJ, Brooks JR, Wiant Jr HV. 2010. Estimating tree bole volume using artificial neural network models for four species in Turkey. J Environ Manag. 91(3):742–753.
  • Özçelik R, Diamantopoulou MJ, Crecente-Campo F, Eler U. 2013. Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. For Ecol Manag. 306:52–60.
  • Özçelik R, Diamantopoulou MJ, Trincado G. 2019. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey. Comput Electron Agric. 162:773–782.
  • Poudel KP, Cao QV. 2013. Evaluation of methods to predict Weibull parameters for characterizing diameter distributions. For Sci. 59(2):243–252.
  • Poudel KP, Temesgen H, Gray AN. 2018. Estimating upper stem diameters and volume of Douglas-fir and Western hemlock trees in the Pacific northwest. For Ecosyst. 5(1):1–12.
  • Reis LP, de Souza AL, dos Reis PCM, Mazzei L, Soares CPB, Torres CMME, da Silva LF, Ruschel AR, Rêgo LJ, Leite HG. 2018. Estimation of mortality and survival of individual trees after harvesting wood using artificial neural networks in the amazon rain forest. Ecol Eng. 112:140–147.
  • Rojo A, Perales X, Sánchez-Rodríguez F, Álvarez-González JG, Gadow KV. 2005. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). Eur J For Res. 124(3):177–186.
  • Sahin A, Ozdemir GA, Oral O, Aylak BL, Ince M, Ozdemir E. 2023. Estimation of tree height with machine learning techniques in coppice-originated pure sessile oak (Quercus petraea (Matt.) Liebl.) stands. Scand J For Res. doi:10.1080/02827581.2023.2168044.
  • Sakici OE, Misir N, Yavuz H, Misir M. 2008. Stem taper functions for Abies Nordmanniana subsp. Bornmulleriana in Turkey. Scand J For Res. 23(6):522–533.
  • Sakici OE, Özdemir G. 2018. Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdaği fir stands in Karabük region, Turkey. Cerne. 24(4):439–451.
  • Salekin S, Catalán CH, Boczniewicz D, Phiri D, Morgenroth J, Meason DF, Mason EG. 2021. Global tree taper modelling: a review of applications, methods, functions, and their parameters. Forests. 12(7):913.
  • Sandoval S, Acuña E. 2022. Stem taper estimation using artificial neural networks for Nothofagus trees in Natural Forest. Forests. 13(12):2143.
  • SAS Institute Inc. 2004. SASs/ETS® 9.1 user’s guide. Cary, NC: SAS Institute Inc.
  • Seki M, Sakici OE. 2017. Dominant height growth and dynamic site index models for Crimean pine in the Kastamonu–Taşköprü region of Turkey. Can J For Res. 47(11):1441–1449.
  • Seki M, Sakici OE. 2022. Ecoregion-based height-diameter models for Crimean pine. J For Res. 27(1):36–44.
  • Şenyurt M, Ercanlı İ, Bolat F. 2017. Taper equations based on nonlinear mixed effect modeling approach for Pinus nigra in Çankırı forests. Bosque. 38(3):545–554.
  • Şenyurt M, Ercanlı İ, Günlü A, Bolat F, Bulut S. 2020. Artificial neural network models for predicting relationships between diameter at breast height and stump diameter: Crimean pine stands at ÇAKÜ Forest. Bosque. 41(1):25–34.
  • Skudnik M, Jevšenak J. 2022. Artificial neural networks as an alternative method to nonlinear mixed-effects models for tree height predictions. For Ecol Manag. 507:120017.
  • Socha J, Netzel P, Cywicka D. 2020. Stem taper approximation by artificial neural network and a regression set models. Forests. 11(1):79.
  • Trincado G, Burkhart HE. 2006. A generalized approach for modeling and localizing stem profile curves. For Sci. 52(6):670–682.
  • Vahedi AA. 2016. Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass Bioenergy. 88:66–76.
  • Yang S, Burkhart HE. 2020. Robustness of parametric and nonparametric fitting procedures of tree-stem taper with alternative definitions for validation data. J For. 118(6):576–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.