255
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Programmed Cellular Response in Radiation Oncology: Basic and Translational Studies

Pages 1-49 | Published online: 08 Jul 2009

References

  • McClintock B. The significance of responses of the genome to challenge. Science 1984; 226: 792–801.
  • Crompton NEA, Zoelzer F, Schneider E, Kiefer J. Increased mutant induction by very low dose-rate gamma irradiation. Naturwiss 1985; 72: 439–40.
  • Crompton NEA, Barth B, Kiefer J. Inverse dose-rate effect for the induction of 6-thioguanine-resistant mutants in chi-nese hamster V79-S cells by 60Co gamma rays. Radiat Res 1990; 124: 300–8.
  • Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Nature 1995; 268: 1749–53.
  • Steel GG, Deacon JM, Duchesne GM, Horwich A, Kelland LR, Peacock JH. The dose-rate effect in human tumor cells. Radiother Oncol 1987; 9: 299–310.
  • Iliakis G, Metzger L, Muschel RJ, McKenna WG. Induction and repair of DNA double strand breaks in radiation-resis-tant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res 1990; 50: 6575–9.
  • McKenna WG, Weiss MC, Bakanauskas VJ, et al. The role of the H-ras oncogene in radiation resistance and metastasis. Int .1- Radiat Oncol Biol Phys 1990; 18: 849–59.
  • McKenna WG, Iliakis G, Weiss MC, Bernhard EJ, Muschel RJ. Increased G2 delay in radiation-resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Radiat Res 1991; 125: 283–7.
  • Fitzgerald TJ, Daugherty C, Kase K, Rothstein LA, McKenna M. Activated human N-ras oncogene enhances x-irradiation repair of mammalian cells in vitro less effec-tively at low dose. Am J Clinic Oncol 1985; 8: 517–22.
  • Sinclair WK. Cyclic X-ray responses in mammalian cells in vitro. Radiat Res 1968; 33: 620–43.
  • Lewis PD. Variation in individual sensitivity to ionizing radiation. In: Jones RR, Southwood R, eds. Radiation and Health. New York: John Wiley and Sons, 1987: 167–77.
  • Elyan SAG, West CML, Roberts SA, Hunter RD. Use of low-dose rate irradiation to measure the intrinsic radiosensi-tivity of human T-lymphocytes. Int J Radiat Biol 1993; 64: 375–83.
  • Elyan SAG, West CML, Roberts SA, Hunter RD. Use of an internal standard in comparative measurements of the intrin-sic radiosensitivities of human T-lymphocytes. Int J Radiat Biol 1993; 64: 385–91.
  • MacDonald HR, Lees RK. Programmed death of autoreac-tive thymocytes. Nature 1990; 343: 642–4.
  • Crompton NEA, HaM J, Jaussi R, Burkart W. Stau-rosporine and radiation induced G2 cell cycle blocks are equally released by caffeine. Radiat Res 1993; 135: 372–9.
  • Crompton NEA, Larsson B, Jaussi R. A signal transduction pathway controls radiation induced and staurosporine in-duced G2 arrest. In: Paliwal BR, Herbert D, Fowler JF, Kinsella TJ, eds. Prediction of Response in Radiation Ther-apy. New York, USA: American Association of Physicists in Medicine, 1993: 90–101.
  • Bedford JS, Griggs HG. The estimation of survival at low doses and the limits of resolution of the single-cell-plating technique. In: Alper T, ed. Cell Survival After Low Doses of Radiation: Theoretical and Clinical Implications. London: Wiley, 1975: 34–9.
  • Koenig F, Kiefer J. Lack of dose-rate effect for mutation induction by gamma rays in human TK6 cells. Int J Radiat Biol 1988; 54: 891–7.
  • Hall EJ. Radiation dose-rate: A factor of importance in radiobiology and radiotherapy. Br J Radiol 1972; 45: 81–97.
  • Crompton NEA, Sigg M, Jaussi R. Genome lability in radiation-induced transformants of C3H 10T1/2 mouse fibroblasts. Radiat Res 1994; 138: 105–8.
  • Yaes RJ. Using the LQ model in the clinic: definition of normalized total doses. Radiother Oncol 1993; 27: 172–3.
  • Crompton NEA, Emery GC, Shi Y-Q, Sigg M, Blattmann H. Radiation-induced genetic instability: no association with changes in radiosensitivity or cell cycle checkpoints in C3H 10T/2 mouse fibroblasts. Radiat Environ Biophys 1998; 37, in press.
  • Elkind MM, Xing Y, Liu J, et al. Mutation to 6-thioguanine resistance of Chinese hamster cells containing a bacterial gpt gene: Dose-rate dependence of 137Cs gamma-rays. In: Chad-wick KH, Cox R, Leenhouts HP, Thacker J, eds. Molecular Mechanisms in Radiation-Induced Mutagenesis and Car-cinogenesis. Luxemborg: European Commission Publishers, 1994: 79–84.
  • Xing X, Lindquist MS, Liu J, et al. Low dose rate Depen-dence of the Phenotypic and Genotypic Expressions of mu-tagenesis by 137Cs g-Rays. Radiat Oncol Invest 1995; 3: 17–28.
  • Beer JZ, Jacobson ED, Evans HH, Szumiel I. X-ray and UV mutagenesis in two L5178Y cell strains differing in tumori-genicity, radiosensitivity, and DNA repair. Br J Cancer 1984; 49: 107–11.
  • Evans HH, Homg M, Mend J, Glazier KG, Beer JZ. The influence of dose rate on the lethal and mutagenic effects of X-rays in proliferating L5178Y cells differing in radiation sensitivity. Int J Radiat Biol 1985; 47: 553–62.
  • Furuno-Fukushi I, Ueno AK, Matsudaira H. Mutation in-duction by very low dose rate gamma rays in cultured mouse leukemia cells L5178Y. Radiat Res 1988; 115: 273–80.
  • Furuno-Fukushi I, Matsudaira H. Mutation induction by different dose rates of gamma rays in radiation-sensitive mutants of mouse leukemia cells. Radiat Res 1989; 120: 370–4.
  • Furuno-Fukushi I, Aoki K, Matsudaira H. Mutation induc-tion by different dose rates of gamma rays in near-diploid mouse cells in plateau- and log-phase culture. Radiat Res 1993; 136: 97–102.
  • Grosovsky AJ, Little JB. Evidence for linear response for the induction of mutations in human cells by x-ray exposures below 10 rads. Proc Natl Acad Sci USA 1985; 82: 2092–5.
  • Kerr JFR, Searle J, Harmon By, Bishop CJ. Apoptosis. In: Potten CS, ed. Perspectives on Cell Death. Oxford, UK: Oxford University Press, 1987: 93–128.
  • Yamada T, Ohyama H. Radiation-induced interphase death of rat thymocytes is internally programmed apoptosis). Int .1-Radiat Biol 1988; 53: 65–75.
  • Kohlpoth M. Untersuchungen zur Mutationsinduktion durch 60Co-Gamma-Strahlung in menschlichen Epithelzel-len. Diss., Justus-Liebig-Universität, Giessen, Germany, 1991.
  • Zeuthen J, Norgaard JOR, Avner P, et al. Characterization of a human ovarian teratocarcinoma-derived cell line. Int .1-Cancer 1980; 25: 19–32.
  • Jones CA, Huberman E, Cunningham ML, Peak MJ. Muta-genesis and cytotoxicity in human epithelial cells by far-and near-ultraviolet radiations: action spectra. Radiat Res 1987; 110: 244–54.
  • Kiefer J. Dosisleistungsabhaengigkeit der Mutationsausloe-sung durch ionisierende Strahlen in Saeugerzellen. Moleku-lare und zellulaere Prozesse bei der Entstehung stochastischer Strahlenwirkungen. Veroeffentlichungen der Strahlenschutzkommssion, Band 33. Stuttgart: G. Fischer-Verlag, 1995: 103–16.
  • Thames HD, Withers HR, Peters LJ, Fletcher GH. Changes in early and late radiation responses with altered dose frac-tionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 1982; 8: 219–26.
  • Joiner MC, Denekamp J, Maughan RL. The use of 'top-up' experiments to investigate the effect of very small doses per fraction in mouse skin. Int J Radiat Biol 1986; 49: 565–80.
  • Joiner MC, Marples B, Johns H. The limitation of the linear-quadratic model at low doses per fraction. In: Beck-Bornholdt H-P, ed. Medical Radiology: Current Topics in Clinical Radiobiology of Tumors. Berlin: Springer-Verlag, 1993: 51–66.
  • Joiner MC, Johns H. Renal damage in the mouse: the response to very small doses per fraction. Radiat Res 1988; 114: 385–98.
  • Beck-Bornholdt HP, Maurer T, Becker S, Omnizynski M, Vogler H, Wurschmidt F. Radiotherapy of the rhab-domyosarcoma R1H of the rat: hyperfractionation-126 frac-tions applied within 6 weeks. Int J Radiat Oncol Biol Phys 1989; 16: 701–5.
  • Palcic B, Jaggi B. The use of solid state sensor technology to detect and characterize live mammalian cells growing in tissue culture. Int J Radiat Biol 1986; 50: 345–52.
  • Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: Evidence of enhanced sensitivity of the whole cell population. Radiat Res 1993; 133: 41–51.
  • Lambin P, Marples B, Malaise EP, Fertile B, Joiner MC. Hypersensitivity of a human tumour cell line to very low radiation doses. Int J Radiat Biol 1993; 63: 639–50.
  • Lambin P, Malaise EP, Joiner MC. Megafractionement: une methode pour agir sur les tumeurs intrinsequement radiore-sistantes? Bull Cancer Radiother 1993; 80: 417–23.
  • Lambin P, Fertil B, Malaise EP, Joiner MC. Multiphasic survival curve of human tumour cell lines: induced repair or hypersensitive subpopulations. Radiat Res 1994; 138: S32–6.
  • Singh B, Arrand JE, Joiner MC. Hypersensitive response of normal human lung epithelial cells at low radiation doses. Int J Radiat Biol 1994; 65: 457–64.
  • Wouters BG, Skarsgaard LD. The response of a human cell line to low radiation doses: evidence of enhanced sensitivity. Radiat Res 1994; 138: S76–80.
  • Singh B, Fahey J, Lambin P, Arrand JE, Joiner MC. Effect of dose and time on the induction of radioresistance in human cells exposed to low-doses of radiation. Proc 42nd Ann Meet Radiat Res Soc 1994; # P20-349: 194.
  • Lambin P, Marples B, Fertil B, Malaise EP, Joiner MC. Low dose radiation response of human tumour cell lines of different intrinsic radiosensitivity. In: Paliwal B, Herbert D, Fowler JF, Kinsella TJ, eds. Prediction of Response in Radiation Therapy. New York: American Association of Physicists in Medicine, 1993: 311–9.
  • Boice JD, Blettner M, Kleinerman RA, et al. Radiation dose and leukemia risk in patients treated for cancer of the cervix. JNCI 1993; 79: 1295–311.
  • Upton AC. The dose response relation in radiation induced cancer. Cancer Res 1961; 21: 717–29.
  • Hall EJ, Miller RC. The how and why of in vitro oncogenic transformation. Radiat Res 1981; 87: 208–23.
  • Hall EJ. Radiobiology for the Radiologist, 3rd edition. Philadelphia: J.B.Lippincott Company, 1988.
  • Malaise EP, Lambin P, Joiner MC. Radiosensitivity of hu-man cell lines to small doses. Are there some clinical implica-tions. Radiat Res 1994; 138: S25–7.
  • Chmelevsky D, Spiess H, Mays CW, Kellerer AM. The reverse protraction factor in the induction of bone sarcomas in radium-224 patients. Radiat Res 1990; 124: S69–79.
  • Hill CK, Carnes BA, Han A, Elkind MM. Neoplastic trans-formation is enhanced by multiple low doses of fission spectrum neutrons. Radiat Res 1985; 102: 404–10.
  • Sevc J, Kunz E, Tamasek L. Cancer in man after exposure to Radon daughters. Health Phys 1987; 54: 27–46.
  • Lubin JH, Qiao Y, Taylor PR, et al. Quantitative evaluation of the radon and lung cancer association in a case-control study of Chinese tin miners. Cancer Res 1985; 50: 174–80.
  • BEIR V. National Academy of Sciences, Committee on the Biological Effects of Ionizing Radiations. Health effects of exposure to low levels of ionizing radiation. National Academy Press, Washington D.C., USA, 1990.
  • Ullrich RL. Tumor induction in BALB/c mice after fraction-ated or protracted exposures to fission-spectrum neutrons. Radiat Res 1984; 97: 587–97.
  • Miller RC, Geard CR, Geard MJ, Hall EJ. Cell-cycle-depen-dent radiation-induced oncogenic transformation of C3H 10T1/2 cells. Radiat Res 1992; 130: 129–33.
  • Cao J, Wells RL, Elkind MM. Enhanced sensitivity to neoplastic transformation by 137Cs gamma-rays of cells in the G2-/M-phase age interval. Int J Radiat Biol 1992; 62: 191–9.
  • Schneiderman MH, Schneiderman GS. G2 cells: progression delay and survival. Radiat Res 1984; 98: 389–96.
  • Goodhead DT. The initial physical damage produced by ionizing radiations. Int J Radiat Biol 1989; 56: 623–34.
  • Deschavanne PJ, Debieu D, Fertil B, Malaise EP. Re-evalu-ation of in vitro radiosensitivity of human fibroblasts of different genetic origins. Int J Radiat Biol 1986; 50: 279–93.
  • Bryant PE. Changes in sensitivity of cells during exposure to radiation at low dose-rate. Int J Radiat Biol 1972; 22: 67–73.
  • Hendry JH. Radioresistance in fern spores by prior irradia-tion. Radiat Res 1986; 106: 396–400.
  • Santier S, Gilet R, Malaise EP. Induced radiation resistance during low-dose-rate gamma irradiation in plateau-phase Chlorella cells. Radiat Res 1985; 104: 224–33.
  • Leenhouts HP, Susma MJ, Litwiniszyn M, Broerties C, Chadwick KH. Radiation stimulated repair in Saintpaulia cells in vivo. In: Edwards HE, et al., eds. Radiation Biology and Chemistry. Amsterdam, Holland: Elsevier, 1979: 227–36.
  • Calkins J. An unusual form of response in X-irradiated protozoa and a hypothesis as to its origin. Int J Radiat Biol 1967; 12: 297–301.
  • Ikushima T. Chromosomal responses to ionizing radiation reminiscent of an adaptive 67 response in cultured Chinese hamster cells. Mutat Res 1987; 180: 215–21.
  • Ikushima T. Radio-adaptive response: characterization of a cytogenetic repair induced by low-level ionizing radiation in Chinese hamster cells. Mutat Res 1989; 227: 241–6.
  • Tuschl H, Altmann H, Kovac R, Topaloglou A, Egg D, Gunther R. Effects of low-dose radiation on repair processes in human lymphocytes. Radiat Res 1980; 81: 1–9.
  • Shadley JD, Wiencke JK. Induction of the adaptive response is dependent on radiation intensity. Int J Radiat Biol 1987; 56: 107–18.
  • Shadley JD, Wolff S. Very low dose of X-rays can cause human lymphocytes to become less susceptible to ionizing radiation. Mutagenesis 1989; 2: 95–6.
  • Koval TM. Multiphasic survival response of a radioresistant lepidopteran insect cell line. Radiat Res 1984; 98: 642–8.
  • Koval TM. Inducible repair of ionizing radiation damage in higher eukaryotic cells. Mutat Res 1986; 173: 291–3.
  • Koval TM. Enhanced recovery from ionizing radiation dam-age in a lepidopteran insect cell line. Radiat Res 1988; 115: 413–20.
  • Papathanasiou MA, Kerr NCK, Robbins JH, et al. Induc-tion by ionizing radiation of the gadd45 gene in cultured human cells: Lack of mediation by protein kinase C. Mol Cell Biol 1991; 11: 1009–16.
  • Liversage WE. A general formula for equating protracted and acute regimes of radiation. Br J Radiol 1969; 42: 432–40.
  • Sandell LL, Zakian VA. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 1993; 75: 729–39.
  • Foray N, Fertil B, Alsbeih MGA, Badie C, Chavaudra N, Iliakis G, Malaise EP. Dose-rate effect on radiation-induced DNA double-strand breaks in the human fibroblast HFI9 cell line. Int J Radiat Biol 1995; 69: 241–9.
  • Savage JRK, Holloway M. Induction of sister-chromatid exchanges by d42 MeV) Be neutrons in unstimulated human blood lymphocytes. Br J Radiol 1988; 61: 231–4.
  • Crompton NEA, HaM J, Jaussi R, Burkart W. Stau-rosporine and radiation-induced G2 cell cycle blocks are equally released by caffeine. Radiat Res 1993; 135: 372–9.
  • Lock RB, Ross WE. Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res 1990; 50: 3761–6.
  • Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science 1989; 246: 629–34.
  • Yi PN, Evans HH, Ricanati M, Mulvihill JW, Beer JZ. Threshold dose rate and sensitivity for mitotic delay. Proc 42nd Ann Meet Radiat Res Soc 1994; # P17-283: 177.
  • Rowley R. Comment on the paper by Grinfeld et al. Int J Radiat Biol 1987; 52: 87–90.
  • HaM J, Crompton NEA, Burkart W, Jaussi R. Caffeine release of radiation induced S and G2 phase arrest in V79 hamster cells: Increase of histone mRNA levels and p34cdc2 activation. Cancer Res 1993; 53: 1507–10.
  • Walters RA, Gurley LR, Tobey RA. Effects of caffeine on radiation-induced phenomena associated with cell-cycle tra-verse of mammalian cells. Biophys J 1974; 14: 99–118.
  • Painter RB, Young RB. Radiosensitivity in ataxia telangiec-tasia: a new explanation. Proc Natl Acad Sci USA 1980; 77: 7315–7.
  • Ward JF. The complexity of DNA damage: relevance to biological consequences. Int J Radiat Biol 1994; 66: 427–32.
  • Nelson WG, Kastan MB. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA dam-age response pathways. Mol Cell Biol 1994; 14: 1815–23.
  • Kan L-S, Borer PN, Cheng DM, Ts'o POP. H- and C-NMR studies of caffeine and its interaction with nucleic acids. Biopolymers 1980; 19: 1641–54.
  • Tornaletti S, Russo P, Parodi S, Pedrini AM. Biochim Biophys Acta 1989; 1007: 112–5.
  • Lang H. Model for repair inhibition by caffeine. Studia Biophys 1975; 50: 213–21.
  • Lang H. On the interaction between caffeine and nucleic acids I. The influence of caffeine on the secondary structure of native DNA and RNA. Studia Biophys 1976; 55: 137–56.
  • Stambrook PJ, Velez C. Reversible arrest of Chinese hamster V79 cells in G2 by dibutyryl cyclic AMP. Exp Cell Res 1976; 99: 57–62.
  • Oleinick NL, Brewer EN, Rustad RC. The reduction of radiation-induced mitotic delay by caffeine: A test for the cyclic AMP hypothesis. Int J Radiat Biol 1978; 33: 69–73.
  • Kimler BF, Leeper DB, Snyder MH, Rowley R, Schneider-man M. Modification of radiation-induced division delay by caffeine analogues and dibutyryl cyclic AMP. Int J Radiat Biol 1982; 41: 47–58.
  • Burgoyne RD, Cheek TR, Morgan A, O'Sullivan AJ. Distri-bution of two distinct Ca ATPase-like proteins. Nature 1989; 342: 72–4.
  • Draetta G. Cell cycle control in eukaryotes: molecular mech-anisms of cdc2 activation. Trends Biochem Sci 1989; 15: 378–83.
  • Miake-Lye R, Newport JW, Kirschner MW. Maturation-promoting factor induces nuclear envelope breakdown in cycloheximide-arrested embryos of Xenopus laevis. J Cell Biol 1983; 97: 81–91.
  • Newport JW, Kirschner MW. Regulation of the cell cycle during early Xenopus development. Cell 1984; 37: 731–42.
  • Murray AW, Solomon MJ, Kirschner MW. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 1989; 339: 280–6.
  • Hunt T, Luca FC, Ruderman JV. The requirements for protein synthesis and degradation, and the control of de-struction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo. J Cell Biol 1992; 116: 707–24.
  • Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW. Cyclin activation of p34cdc2 Cell 1990; 63: 1013–24.
  • Broek D, Bartlett R, Crawford K, Nurse P. Involvement of p34cdc2 in establishing the dependency of S phase on mito-sis. Nature 1991; 349: 388–93.
  • Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D. mikl and weel cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 1991; 64: 1111–22.
  • Draetta G, Beach D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phospho-rylation and subunit rearrangement. Cell 1988; 54: 17–26.
  • Brizuela L, Draetta G, Beach D. Activation of human CDC2 protein as a histone HI kinase is associated with complex formation with the p62 subunit. Proc Natl Acad Sci USA 1989; 86: 4362–6.
  • Gautier J, Minshull J, Lohka M, Glotzer M, Hunt T, Mailer JL. Cyclin is a component of maturation-promoting factor from Xenopus. Cell 1990; 60: 487–94.
  • Meikrantz W, Suprynowicz FA, Halleck MS, Schlegel RA. Identification of mitosis-specific p65 dimer as a component of human M phase-promoting factor. Proc Natl Acad Sci USA 1990; 87: 9600–4.
  • Dunphy WG, Newport JW. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell 1989; 58: 181–91.
  • Meijer L, Anion D, Golsteyn R, etal. Cyclin is a component of the sea urchin egg M-phase specific histone HI kinase. EMBO J 1989; 8: 2275–82.
  • Meijer L, Azzi L, Wang JYJ. Cyclin B targets p34cdc2 for tyrosine phosphorylation. EMBO J 1991; 10: 1545–54.
  • Gould KL, Nurse P. Tyrosine phosphorylation of the fission yeast cdc2 protein kinase regulates entry into mitosis. Nature 1989; 342: 39–45.
  • Krek W, Nigg EA. Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: Evidence for a double block to p34cdc2 kinase activation in verte-brates. EMBO J 1991; 10: 3331–41.
  • Moreno S, Nurse P. Clues to action of cdc25 protein. Nature 1991; 351: 194.
  • Muschel RJ, Zhang HB, Iliakis G, McKenna WG. Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. Cancer Res 1991; 51: 5113–7.
  • Muschel RJ, Zhang HB, Iliakis G, McKenna WG. Effects of ionizing radiation on cyclin expression in HeLa cells. Radiat Res 1992; 132: 153–7.
  • Muschel RJ, Zhang HB, McKenna WG. Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in Hela cells. Cancer Res 1993; 53: 1128–35.
  • Enoch T, Carr A, Nurse P. Checkpoint check. Nature 1993; 361: 26.
  • Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 1988; 241: 317–22.
  • Weinert TA, Hartwell LH. Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J Cell Sci Suppl 1989; 12: 145–8.
  • Weinert TA, Hartwell LH. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol Cell Biol 1990; 10: 6554–64.
  • Dasso M, Newport JW. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 1990; 61: 811–23.
  • Heald R, McLoughlin M, McKeon F. Human weel main-tains mitotic timing by protecting the nucleus from cytoplas-mically activated Cdc2 kinase. Cell 1993; 74: 463–74.
  • McGowan CH, Russell P. Human Weel kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 1993; 12: 75–85.
  • Enoch T, Nurse P. Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 1990; 60: 665–73.
  • Honda R, Ohba Y, Nagata A, Okayama H, Yasuda H. Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBS Lett 1993; 318: 331–4.
  • Dunphy WG, Kumagai A. The cdc25 protein contains an intrinsic phosphatase activity. Cell 1991; 67: 189–96.
  • Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW. cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2. Cell 1991; 67: 197–211.
  • Millar JBA, Russell P. The cdc25 M-phase inducer: An unconventional protein phosphatase. Cell 1992; 68: 407–10.
  • Lehnert S. Relationship of cyclic AMP levels to duration of radiation-induced mitotic delay. Int .1- Radiat Biol 1979; 36: 417–22.
  • Rowley R, Zorch M, Leeper DB. Effect of caffeine on radiation-induced mitotic delay. Radiat Res 1984; 97: 178–85.
  • Crompton NEA, Michel C, Burkart W. The role of the phospholipase C signal transduction pathway in the expres-sion of radiation induced G2 delay. In: Seymour CB, Moth-ershill C, eds. New Developments in Fundamental and Applied Radiobiology. London, UK: Taylor & Francis Ltd, 1991: 138–43.
  • Kikkawa U, Nishizuka Y. The role of protein kinase C in transmembrane signalling. Ann Rev Cell Biol 1986; 2: 149–78.
  • Lehmann AR. Effect of caffeine on DNA synthesis in mam-malian cells. Biophys J 1972; 12: 1316–25.
  • Schroeder E, Magdon E. Influence of caffeine on the DNA synthesis and the sedimentation behaviour of normal and irradiated mammalian cells. Stud Biophys 1975; 51: 209–14.
  • Abe K, Yoshida M, Usui T, Horinouchi S, Beppu T. Highly synchronous culture of fibroblasts from G2 block caused by staurosporine, a potent inhibitor of protein kinases. Exp Cell Res 1991; 192: 122–7.
  • Crissman HA, Gadbois DM, Tobey RA, Bradbury EM. Transformed mammalian cells are deficient in kinase-medi-ated control of progression through the GI phase of the cell cycle. Proc Natl Acad Sci USA 1991; 88: 7580–4.
  • Rowley R, Hudson J, Young PG. The weel protein kinase is required for radiation-induced mitotic delay. Nature 1992; 356: 353–5.
  • Parker LL, Piwnica-Worms H. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 1992; 257: 1955–7.
  • Murray AW. Creative blocks: Cell-cycle checkpoints and feedback controls. Nature 1992; 359: 599–604.
  • Gadbois DM, Hamaguchi JR, Swank RA, Bradbury EM. Staurosporine is a potent inhibitor of p34cdc2 and p34cdc2-like kinases. Biochem Biophys Res Comm 1992; 184: 80–5.
  • Crompton NEA, Saydan N. Control of the cell cycle. J Neurooncol 1994; 22: 255–9.
  • Sinclair WK. X-ray-induced heritable damage small-colony formation) in cultured mammalian cells. Radiat Res 1964; 21: 584–611.
  • Beer JZ. Heritable lesions affecting proliferation of irradi-ated mammalian cells. Adv Radiat Biol 1979; 8: 363–417.
  • Seymour C, Mothersill C, Alper T. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int .1- Radiat Biol 1986; 50: 167–79.
  • Seymour C, Mothersill C. All colonies of CHO-K1 cells surviving g-irradiation contain non-viable cells. Mutat Res 1992; 267: 19–30.
  • Chang WP, Little JB. Delayed reproductive death in X-irra-diated Chinese hamster ovary cells. Int .1- Radiat Biol 1991; 60: 483–96.
  • Chang WP, Little JB. Evidence that DNA double-strand breaks initiate the phenotype of delayed reproductive death in Chinese hamster ovary cells. Radiat Res 1992; 131: 53–9.
  • Hendry JH, West CML. Implications of delayed reproduc-tive death lethal mutations/genomic instability for the inter-pretation of tissue responses. Int .1- Radiat Biol 1995; 68: 363–7.
  • Paquette B, Little JB. Genomic rearrangements in mouse C3H/10T1/2 cells transformed by X-rays, UV-C, and 3-methylcholanthrene detected by a DNA fingerprint assay. Cancer Res 1992; 52: 5788–93.
  • Paquette B, Little JB. In vivo enhancement of genomic instability in minisatellite sequences of mouse C3H/10T1/2 cells transformed in vitro by X-rays. Cancer Res 1994; 54: 3173–8.
  • Tlsty TD, White A, Sanchez J. Suppression of gene amplifi-cation in human cell hybrids. Science 1992; 255: 1425–7.
  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992; 70: 923–35.
  • Stamato T, Weinstein R, Peters B, Hu J, Doherty B, Giaccia A. Delayed mutation in Chinese hamster cells. Somat Cell Mol Genet 1987; 13: 57–66.
  • Little JB, Gorgojo L, Vetrovs H. Delayed appearance of lethal and specific gene mutations in irradiated mammalian cells. Int J Radiat Oncol Biol Phys 1989; 19: 1425–9.
  • Mendonca MS, Antoniono RJ, Redpath JL. Delayed herita-ble damage and epigenetics in radiation-induced neoplastic transformation of human hybrid cells. Radiat Res 1993; 134: 209–16.
  • Denko NC, Giaccia AJ, Stringer JR, Stambrrok PJ. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci USA 1994; 91: 5124–8.
  • Kennedy AR, Fox M, Murphy G, Little JB. Relationship between x-ray exposure and malignant transformation in C3H 10T1/2 cells. Proc Natl Acad Sci USA 1980; 77: 7262–6.
  • Kennedy AR, Cairns J, Little JB. Timing of the steps in transformation of C3H 10T1/2 cells by X-irradiation. Nature 1984; 307: 85–7.
  • McClintock B. Chromosome organization and genic expres-sion. CSH Symp Quant Biol 1951; 16: 13–47.
  • Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER. Diverse transposable elements are mobilized in hybrid dysge-nesis in Drosophila virilis. Proc Natl Acad Sci USA 1995; 92: 8050–4.
  • Nowell PC. The clonal evolution of tumour cell populations. Science 1976; 194: 23–8.
  • Renan MJ. How many mutations are required for tumorige-nesis? Implications from human cancer data. Mol Carcino-gen 1993; 7: 139–46.
  • Loeb LA. Mutator phenotype may be required for multi-stage carcinogenesis. Cancer Res 1991; 51: 3075–9.
  • Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 1994; 54: 5059–63.
  • Hartwell LH. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992; 71: 543–6.
  • Foulds L. The experimental study of tumor progression: a review. Cancer Res 1954; 14: 317–39.
  • Cifone MA, Fidler U. Increasing metastatic potential is associated with increasing genetic instability of clones iso-lated from muring neoplasms. Proc Natl Acad Sci USA 1981; 78: 6949–52.
  • Seshadri R, Kutlaca RJ, Trainor K, Matthews C, Morley AA. Mutation rate of normal and malignant human lymphocytes. Cancer Res 1987; 47: 407–9.
  • Tlsty TD, Margolin BH, Lum K. Differences in the rates of gene amplification in nontumorigenic and tumorigeneic cell lines as measured by Luria-Delbrueck fluctuation analysis. Proc Natl Acad Sci USA 1989; 86: 9441–5.
  • Vogelstein B, Fearson ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science 1989; 241: 207–11.
  • Mao L, Lee DJ, Tockman MS, Erozan YS, Askin F, Sidran-sky D. Microsatellite alterations as clonal markers for the detection of human cancer. Proc Natl Acad Sci USA 1994; 91: 9871–5.
  • Kennedy AR. Is a mutagenic event involved in radiation-in-duced malignant transformation? Mutat Res 1996; 350: 81–91.
  • Reznikoff CA, Bertram J, Brankow DW, Heidelberger C. Quantitative and qualitative studies of chemical transforma-tion of clonal C3H mouse embryo cells sensitive to post confluence inhibitin of cell division. Cancer Res 1973; 33: 3239–49.
  • Su L-N, Little JB. Prolonged cell cycle delay in radioresis-tant human cell lines transfected with activated ras oncogene and/or Simian virus 40 T-antigen. Radiat Res 1993; 133: 73–9.
  • Bettega D, Calzolari P, Ottolenghi A, Tallone Lombadi L. Criteria and techniques for analysing cell survival data. Radiat Environ Biophys 1991; 30: 53–70.
  • Terzaghi M, Little JB. X-radiation-induced transformation in a C3H mouse embryo-derived cell line. Cancer Res 1976; 36: 1367–74.
  • Kastan MB, Onyekwere 0, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–11.
  • Inui K, Yamamoto M, Saito H. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: Specific transport systems in apical and basolat-eral membranes. J Pharmacol Exp Therap 1992; 261: 195–201.
  • Kastan MB, Zhan Q, El-Deiry WS, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 1992; 71: 587–97.
  • Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B. Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature 1992; 355: 846–7.
  • Krolewski B, Little JB. Application of denaturing gradient gel blots to detect p53 mutations in X-ray-transformed mouse C3H 10T1/2 clones. Mol Carcinog 1993; 7: 190–6.
  • Sigg M, Crompton NEA, Burkart W. Enhanced transforma-tion in an inhomogeneous radiation field: an effect of expo-sure to superlethally damaged cells. Radiat Res 1997; 148: 543–7.
  • Sigg M, Crompton NEA, Burkart W. A pure beta line source to assess hot particles in vitro. Health Phys 1996; 71: 135–41.
  • Han A, Hill CK, Elkind MM. Repair of cell killing and neoplastic transformation at reduced dose rates of Co-60 gamma-rays. Cancer Res 1980; 40: 3328–32.
  • Jacobson MD. Reactive oxygen species and programmed cell death. TIBS 1996; 21: 83–6.
  • Nagasawa H, Little JB. Induction of sister chromatid ex-changes by extremely low doses of alpha-particles. Cancer Res 1992; 52: 6394–6.
  • Deshpand A, Goodwin EH, Bailey SM, Marrone DL, Leh-nert BE. Alpha-particle-induced sister chromatid exchanges in normal human lung fibroblasts: Evidence for an extranu-clear target. Rad Res 1996; 145: 260–7.
  • Hickman AW, Jaramillo RJ, Lechner JF, Johnson NF. Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain. Cancer Res 1994; 54: 5797–800.
  • Weichselbaum RR, Hallahan DE, Sukhatme V, Dritschilo A, Sherman ML, Kufe DW. Biological consequences of gene regulation after ionizing radiation exposure. J Natl Cancer Inst 1991; 83: 480–4.
  • Coleman WB, Throneburg DB, Grisham JW, Smith GW. Overexpression of c-K-ras, c-N-ras and transforming growth factor beta co-segregate with tumorigenicity in morphologi-cally transformed C3H 10T1/2 cell lines. Carcinogenesis 1994; 15: 1005–12.
  • Sorrentino V, Drozdoff V, Zeitz L, Fleissner E. Increased radiation-induced transformation in C3H/10T1/2 cells after transfer of an exogeneous c-myc gene. Proc Natl Acad Sci USA 1987; 84: 4131–4.
  • Schwarz LC, Damen JE, Greenberg AH, Wright JA. Altered responsiveness of metastatic versus non-metastatic fibrob-lasts to heparin-binding growth factors. Cancer Lett 1988; 42: 193–7.
  • Van Bekkum DW, Bentvelzen P. The concept of gene trans-fer-misrepair mechanism of radiation carcinogenesis may challenge the linear extrapolation model of risk estimation for low radiation doses. Health Phys 1982; 43: 231–7.
  • Hill CK, Han A, Elkind MM. Promoter-enhanced neoplastic transformation after gamma-ray exposure at 10 cGy/day. Radiat Res 1989; 199: 348–55.
  • Milligan CE, Schwartz LM. Programmed cell death during development of animals. Cellular Aging and Cell Death. New York, USA: Wiley-Liss, Inc, 1996: 181–208.
  • Zou H, Niswander L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 1996; 272: 738–41.
  • Hedgecock EM, Sulston JE, Thomson JN. Mutations affect-ing programmed cell deaths in the nematode Caenorhabditis elegans. Science 1983; 220: 1277–9.
  • Wyllie AH, Kerr JFR, Currie AR. Cell death: the signifi-cance of apoptosis. Int Rev Cytol 1981; 68: 251–306.
  • Hall EJ. Radiobiology for the Radiologist, 4th edition. Philadelphia: J.B.Lippincott Company, 1994.
  • Gorman A, McCarthy J, Finucane D, Reville W, Cotter T. Morphological assessment of apoptosis. In: Cotter TG, Mar-tin SJ, eds. Techniques in Apoptosis. London, UK: Portland Press Ltd, 1994: 1–20.
  • Tanaka N, Ishihara M, Lamphier MS, et al. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 1996; 382: 816–8.
  • Hale AJ, Smith CA, Sutherland LC, et al. Apoptosis: molec-ular regulation of cell death. Eur J Biochem 1996; 236: 1–26.
  • Cuvillier O, Pirianov G, Kleuser B, et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996; 381: 800–3.
  • Santana P, Pena LA, Haimovitz-Friedman A, et al. Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 1996; 86: 189–99.
  • Verheij M, Bose R, Lin XH, et al. Requirement for ce-ramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380: 75–9.
  • Kassid U, Suy S, Dent P, Ray S, Whiteside TL, Sturgill TW. Activation of Raf by ionizing radiation. Nature 1996; 382: 813–6.
  • Wang C-Y, Mayo MW, Baldwin AS. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB. Science 1996; 274: 784–7.
  • Crompton NEA, Ozsahin M. A versatile and rapid radiosen-sitivity assay of peripheral blood leukocytes based on DNA and surface marker assessment of cytotoxicity. Radiat Res 1997; 147: 55–60.
  • Ozsahin M, Ozsahin H, Shi Y, Larsson B, Wfirgler FE, Crompton NEA. A rapid assay of intrinsic radiosensitivity based on apoptosis in human CD4 and CD8 T-lymphocytes. Int J Radiat Oncol Biol Phys 1997; 38: 427–40.
  • Peters U. Significance of genetic variability in radiosensitiv-ity in clinical radiotherapy. J Jpn Soc Ther Radiol Oncol 1990; 2: 247–53.
  • Fisher DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539–42.
  • Lowe S, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–67.
  • Lowe S, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymo-cytes. Nature 1993; 362: 847–9.
  • White E. p53, guardian of Rb. Nature 1994; 371: 21–2.
  • McIlwrath AJ, Vasey PA, Ross GM, Brown R. Cell cycle arrests and radiosensitivity of human tumour cell lines: dependence on wild-type p53 for radiosensitivity. Cancer Res 1994; 54: 3718–22.
  • Begg AC, Russell NS, Knaken H, Lebesque JV. Lack of correlation of human fibroblast radiosensitivity in vitro with early skin reactions in patients undergoing radiotherapy. Int J Radiat Biol 1993; 64: 393–405.
  • Stewart CC, Stevenson AP, Habbersett RC. The effect of low-dose irradiation on unstimulated and PHA-stimulated human lymphocyte subsets. Int J Radiat Biol 1988; 53: 77–87.
  • Floyd DN, Cassoni AM. Intrinsic radiosensitivity of adult and cord blood lymphocytes as determined by the micronu-cleus assay. Eur J Cancer 1994; 30A: 615–20.
  • Crompton NEA, Ozsahin M, Melicharova L, Larsson B. A rapid assay of patient radiosensitivity. In: Germond J-F, Haefliger J-M, eds. Proc of the Journées Scientifiques de la Societe Suisse de Radiobiologie et Physique Médicale. La Chaux-de-Fonds, Switzerland: Verlag Hengg S.A, 1994: 157–62.
  • Waugh APW, Beare DM, Arlett CF, Green MHL, Cole J. Comparative human cellular radiosensitivity: IV. The in-creased sensitivity of human neonatal cord blood lymphocytes to gamma-irradiation compared with lymphocytes from children and adults. Int J Radiat Biol 1991; 59: 767–76.
  • Natarajan AT, Beninson D, Lloyd DC, Obe G, Preston RJ, Sasaki MS. In: Biological Dosimetry: Chromosomal aberra-tion analysis for dose assessments. IAEA Technical reports series no. 260, Vienna, Austria, 1986.
  • Lloyd DC, Purrott RJ. Chromosome aberration analysis in radiological protection dosimetry. Radiat Protect Dosimetry 1981; 1: 19–28.
  • Fenech M, Morley A. Measurement of micronuclei in lymphocytes. Mutat Res 1985; 147: 29–36.
  • Mill AJ, Wells J, Hall SC, Butler A. Micronucleus induction in human lymphocytes: comparative effects of x-rays, alpha-particles, beta-particles and neutrons and implications for biological dosimetry. Radiat Res 1986; 145: 575–85.
  • Almassey Z, Krepinsky AB, Bianco A, Koeteles GJ. The present state and perspectives of micronucleus assay in radi-ation protection. A review. Appl Radiat Isot 1987; 38: 241–9.
  • Ramalho A, Sunjevaric I, Natarajan AT. Use of the frequen-cies of micronuclei as quantitative indicators of x-ray in-duced chromosomal aberrations in human peripheral blood lymphocytes: comparison of two methods. Radiat Res 1988; 207: 141–6.
  • Littlefield LG, Sayer AM, Frome EL. Comparisons of dose-response parameters for radiation induced acentric frag-ments and micronuclei observed in cytokinesis-arrested lymphocytes. Mutagenesis 1989; 4: 265–70.
  • Fenech M, Denham J, Francis W, Morley A. Micronuclei in cytokinesis-blocked lymphocytes of cancer patients following fractionated partial-body radiotherapy. Int J Radiat Biol 1990; 57: 373–83.
  • Gantenberg HW, Wuttke K, Streffer C, Muller WU. Mi-cronuclei in human lymphocytes irradiated in vitro or in vivo. Radiat Res 1991; 128: 276–81.
  • Thierens H, Vral A, de Ridder L. Biological dosimetry using the micronucleus assay for lymphocytes: inter-individual dif-ferences in dose response. Health Phys 1991; 61: 623–30.
  • Castelain P, van Hummelen P, Deleener A, Kirsch-Volders M. Automated detection of cytochalasin-B blocked binucle-ated lymphocytes for scoring micronuclei. Mutagenesis 1993; 8: 285–93.
  • Menz R, Andres R, Larsson B, Ozsahin M, Trott K, Cromp-ton NEA. Biological dosimetry: the potential use of radia-tion-induced apoptosis in human T-lymphocytes. Radiat Environ Biophys 1997; 36: 175–81.
  • Miller RA. Aging and the immune response. In: Schneider and Rowe, eds. Handbook of the Biology of Aging, 4th edition, New York: Academic Press, 1996:355–392.
  • Uzawa A, Suzuki G, Nakata Y, Akashi M, Ohyama H, Akanuma A. Radiosensitivity of CD45R0 ± memory and CD45R0 - naive T cells in culture. Radiat Res 1994; 137: 25–33.
  • Harris G, Holmes A, Sabovljev SA, et al. Sensitivity to X-irradiation of peripheral blood lymphocytes from ageing donors. Int .1- Radiat Biol 1986; 50: 685–94.
  • Wei Q, Matanoski GM, Farmer ER, Hedayati MA, Gross-man L. DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci USA 1993; 90: 1614–8.
  • Kruk PA, Rampino NJ, Bihr VA. DNA damage and repair in telomeres: relation to aging. Proc Natl Acad Sci USA 1995; 92: 258–62.
  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 1994; 91: 9857–60.
  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16. Cell 1997; 88: 593–602.
  • Campisi J. Repicative senescence: an old lives' tale. Cell 1996; 84: 497–500.
  • Wang E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bc12 is involved. Cancer Res 1995; 55: 2284–92.
  • Nagel JE, Chrest FJ, Lal P, Adlker WH. Immune function, cell death, and aging. In: Holbrook NJ, Martin GR, Lock-shin RA, eds. Cellular Aging and Cell Death. New York: Wiley-Liss, Inc, 1996: 51–65.
  • Tyson JJ. Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci USA 1991; 88: 7328–32.
  • Norbury C, Nurse P. Animal cell cycles and their control. Ann Rev Biochem 1992; 61: 441–70.
  • Pines J, Hunter T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 1989; 58: 833–46.
  • Solomon MJ, Gautier J, Lee TH, Kirschner MW. Control of p34cdc2 activation. Cold Spring Habour Symp Quant Biol 1991; 56: 427–35.
  • Jessus C, Beach D. Oscillation of MPF is accompanied by periodic association between cdc25 and cdc2-cyclin B. Cell 1992; 68: 323–32.
  • Lewin B. Genes V. Oxford, UK: Oxford Uni. Press, 1994.
  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular Biology of the Cell, 3rd edition. New York, USA: Garland Pub. Inc, 1994.
  • Bradbury EM. Reversible histone modifications and the chromosome cell cycle. BioEssays 1992; 14: 9–16.
  • Gilbert S. Developmental Biology, 3rd edition. Sunderland, Mass., USA: Sinauer Assoc. Inc, 1991.
  • Wiener N. Cybernetics or Control and Communication in the Animal and Machine. Cambridge, USA: MIT Press, 1948.
  • Lerner AY. Fundamentals of Cybernetics. New York, USA: Plenum, 1972.
  • Earnshaw WC. Nuclear changes in apoptosis. Curr Opin Cell Biol 1995; 7: 337–43.
  • Shannon CE, Weaver W. The Mathematical Theory of Communication. Urbana, USA: Uni. Illinois Press, 1949.
  • Chomsky N. Aspects of the Theory of Syntax. Cambridge, USA: MIT Press, 1965.
  • Gitt W. Information: the third fundamental quantity. Siemens Rev 1989; 56 (6): 2–7.
  • Miller GA. The Science of Words. New York, USA: Scien-tific American Library, Freeman and Co, 1991.
  • Feynman R, Lieghton RB, Sands ML. The Feynman Lec-tures on Physics: Commemorative Issue. Reading, Mass. USA: Addison-Wesley Publishing Co., Inc, 1989.
  • Nurse P. Checkpoint pathways come of age. Cell 1997; 91: 865–7.
  • Nagasawa H, Keng P, Harley R, Dahlberg W, Little JB. Relationship between gamma ray-induced G2/M delay and cellular radiosensitivity. Int J Radiat Biol 1994; 66: 373–9.
  • Bae I, Fan S, Bhatia K, Kohn KW, Fornace AJ, O'Connor PM. Relationships between GI arrest and stability of the p53 and p2I proteins following gamma irradiation of human lymphoma cells. Cancer Res 1995; 55: 2387–93.
  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescent cell-derived inhibitors of DNA synthe-sis using an expression screen. Exp Cell Res 1994; 211: 90–8.
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–60.
  • Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ. In vivo loss of telomeric repeats with age in humans. Mutat Res 1991; 256: 45–8.
  • Crompton NEA. Telomeres, senescence and cellular radia-tion response. Cell Mol Life Sci 1997; 53: 568–75.
  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–36.
  • Matsumara T, Zerrudo Z, Hayflick L. Senescent human diploid cells in culture: survival, DNA synthesis and mor-phology. J Gerontol 1979; 34: 328–34.
  • Stein GH, Drullinger LF, Robetorye RS, Pereira-Smith OM, Smith JR. Senescent cells fail to express cdc2, cycA and cycB in response to mitogen stimulation. Proc Natl Acad Sci USA 1991; 88: 11012–6.
  • Dulic V, Drullinger LF, Lees E, Reed SI, Stein GH. Altered regulation of GI cyclins in senescent human diploid fibrob-lasts: accumulation of inactive cyclin E-cdk2 and cyclin D 1-cdk2 complexes. Proc Natl Acad Sci USA 1993; 90: 11304–8.
  • Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K. Cooper-ative effects of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-I. Biochem Biophys Res Comm 1991; 179: 528–34.
  • Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 1992; 89: 10114–8.
  • Yu G-L, Bradley JD, Attardi LD, Blackburn EH. In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 1990; 344: 126–32.
  • Lundblad V, Blackburn EH. An alternative pathway for yeast telomere maintenance rescues estl- senescence. Cell 1993; 73: 347–60.
  • Harley CB. Telomeres and aging: fact, fancy, and the future. J NIH Res 1995; 7: 64–8.
  • Salk D, Au K, Hoehn H, Stenchver MR, Martin GM. Evidence of clonal attenuation, clonal succession, and clonal expansion in mass cultures of aging Werner's syndrome skin fibroblasts. Cytogenet Cell Genet 1981; 30: 108–17.
  • Mueller HJ. The remaking of chromosomes. Collect Net 1938; 13: 181–98.
  • Mueller HJ, Herskowitz IH. Concerning the healing of chro-mosome ends produced by breakage in Drosophila melanogater. Am Nat 1954; 88: 177–208.
  • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol 1992; 225: 951–60.
  • Goldstein S. Replicative senescence: the human fibroblast comes of age. Science 1990; 249: 1129–33.
  • Tahara H, Sato E, Noda A, Ide T. Increase in expression level of p2I with increasing division age in both normal and 5V40-trabsformed human fibroblasts. Oncogene 1995; 10: 835–40.
  • Shay JW, Wright WE, Brasiskyte D, van der Haegen BA. E6 of human papillomavirus type 16 can overcome the MI stage of immortalization in human mammary epithelial cells but not in human fibroblasts. Oncogene 1993; 8: 1407–13.
  • Klingelhutz AJ, Barber SA, Smith PP, Dyer K, McDougall JK. Restoration of telomeres in human papillomavirus-im-mortalized humananogenital epithelial cells. Mol Cell Biol 1994; 14: 961–9.
  • Harley CB, Vaziri H, Counter CM, Allsopp RC. The telom-ere hypothesis of cellular aging. Exp Gerontol 1992; 27: 375–82.
  • Counter CM, Avilion AA, LeFeuvre CE, et al. Telomere shortening associated with chromosome instability is ar-rested in immortal cells which express telomerase activity. EMBO J 1992; 11: 1921–9.
  • Blackburn EH. Telomerases. Ann Rev Biochem 1992; 61: 113–29.
  • Cech TC. Chromosome end games. Science 1994; 266: 387–8.
  • Greider CW. Telomeres, telomerase and senescence. Bioassays 1990; 12: 363–9.
  • de Lange T. Activation of telomerase in a human tumour. Proc Natl Acad Sci USA 1994; 91: 2882–5.
  • Kim NW, Piatyszek MA, Prowse KR, et al. Specific associa-tion of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–4.
  • Haber DA. Telomeres, cancer, and immortality. New Engl J Med 1995; 332: 955–6.
  • Marx J. Chromosome ends catch fire. Science 1994; 265: 1656–8.
  • Rennie J. Immortal's enzyme. Sci Am July, 8–10, 1994.
  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shaw JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349–52.
  • Lomax A, Munkel G, Blattmann H, Pedroni E. Compara-tive treatment planning as a tool for determining indications and the efficacy of proton therapy. PSI Ann Report. Annex II. 1994:16–18.
  • Scheib S, Pedroni E, Lomax A, et al. Spot scanning with protons at PSI: experimental results and treatment planning. In: Amaldi U, Larsson B, eds. Hadrontherapy in Oncology. Amsterdam, Holland: Elsevier, 1994: 471–80.
  • Blattmann H, Munkel G, Pedroni E, et al. The Swiss pro-tontherapy program. In: Amaldi U, Larsson B, eds. Hadrontherapy in Oncology. Amsterdam, Holland: Elsevier, 1994: 122–9.
  • Larsson B. The new radiations in cancer therapy. In: Amaldi U, Larsson B, eds. Hadrontherapy in Oncology. Amsterdam, Holland: Elsevier, 1994: 33–44.
  • Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, part I. cancer: 1950-1990. Radiat Res 1996; 146: 1–27.
  • Delongchamp RR, Mabuchi K, Yoshimoto Y, Preston DL. Cancer mortality among atomic bomb survivors exposed in utero or as young children, October 1950-May 1992. Radiat Res 1997; 147: 385–95.
  • Locher GL. Biological effects and therapeutic possibilities with neutrons. Am J Roentgenol Radium Ther 1936; 36: 1–13.
  • Binello E, Shortkroff S, Jones A et al. In vitro analysis of 10B uptake for boron neutron capture synovectomy. In: Larsson B, Crawford J, Weinreich R, eds. Advances in Neutron Capture Therapy. Volume 2, Chemistry and Biol-ogy. Amsterdam: Elsevier Science, 1997: 609–613.
  • Hornung R, Walt H, Jentsch B, Crompton NEA, Haller U. In vitro effects of localisation of the photosensitizers m-THPC and m-THPC MD on carcinoma cells of the human breasts MCF-7) and Chinese hamster fibroblasts V-79). Lasers Surg Med 1997; 20: 443–50.
  • Schwiezer P, Walt H, Fehr M, Haller U. Basic research on the biology of m-THPC for photodynamic therapy in Gyne-cology: Preclinical tests for genotoxicity and somatic muta-genicity with Drosophila melanogaster. Lasers Med Sci 1997; 12: 280–4.
  • Colotta F, Fabio R, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 1992; 80: 2012–20.
  • Rex JH, Bhala SC, Cohen DM, Hester JP, Vartivarian SE, Anaissie EJ. Protection of human polymorphonuclear leuko-cyte function from the deleterious effects of isolation, irradi-ation, and storage by interferon-gamma and granulocyte-colony-stimulating factor. Transfusion 1995; 35: 605–11.
  • Gottlieb RA, Giesing HA, Zhu JY, Engler RL, Baboir BM. Cell acidification in apoptosis: granulocyte colony-stimulat-ing factor delays programmed cell death in neutrophils by upregulating the vacuolar H-ATPase. Proc Natl Acad Sci USA 1995; 92: 5965–8.
  • Ozsahin H, von Planta M, Mueller I et al. Successful treat-ment of 72invasive aspergillosis in chronic granulomatous disease by emergency bone marrow transplantation, G-CSF mobilized granulocytes, and liposomal amphotericin-B. 1998, Blood, in press.
  • Ribaud P, Esperou-Bourdeau H, Devergie A, Gluckman E. Aspergillose invasive et allograffe de moelle. Path Biol 1994; 42: 652–5.
  • Bensinger WI, Price TH, Dale DC. The effects of daily recombinant human granulocyte colony-stimulating factor administration on normal granulocyte donors undergoing leukapheresis. Blood 1993; 81: 1883–8.
  • Caspar CB, Seger RA, Burger J, Gmuer J. Effective stimula-tion of donors for granulocyte transfusions with recombi-nant methionly granulocyte colony-stimulating factor. Blood 1993; 81: 2866–71.
  • Stavric B. Methylxanthines: toxicity to humans. 2. Caffeine. Food Chem Toxicol 1988; 26: 645–62.
  • IARC monographs on the evaluation of carcinogenic risks to humans: Coffee, Tea, Mate, Methylxanthines and Methyl-glyoxal. IARC monographs 51, 1991.
  • Crompton NEA, Ozsahin M, Schweizer P, Larsson B, Lue-tolf UM. Theory and practise of predictive assays in radia-tion therapy. Strahlenther Onkol 1997; 173: 58–67.
  • Daly LE, Bourke GJ, McGilvray J. Interpretation and Uses of Medical Statistics, 4th edition. Oxford: Blackwell Scien-tific Publications, 1991.
  • Matthews DE, Farewell VT. Using and Understanding Med-ical Statistics, 2nd edition. Basel: S. Karger AG, 1988.
  • Sieber P, Fateh-Moghadam A. Tumormarker und ihr sin-voller Einsatz. Klin Lab 1993; 39: 291–306.
  • Kaplan EL, Meier P. Non-parametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–81.
  • Peto P, Pike MC, Armitage P, et al. Design and analysis of randomised clinical trials requiring prolonged observation of each patient: Part II. Br J Cancer 1977; 35: 1–39.
  • Cox DR. Regression models and life tables. J Royal Stat Soc 1972; 34: 187–220.
  • Begg AC, McNally NJ, Shrieve DC. A method to measure the duration of DNA synthesis and the potential doubling time from a single sample. Cytometry 1985; 6: 620–6.
  • Kaser-Hotz B, Blattmann H, Böhringer T et al. Canine tumours as a model to develop proton conformation radio-therapy for humans. In: Manenti L, ed. Spontaneous Animal Tumours, 1997, in press.
  • Schwyn U, Kaser-Hotz B, Hauser B, Fodor G, Ruckstuhl H, Crompton NEA. Bestimmung der potentiellen Ver-dopplungszeit von Tumoren mittels Bromodeoxyuridin und Durchflusszytometrie. Schweiz Arch Tierheil 1997; 139: 441–8.
  • Schwyn U, Crompton NEA, Blattmann N et al. Poten-tial tumour doubling time: determination of Tpot for various canine and feline tumours. Vet Res Comm 1998, in press.
  • Roelcke U, Blasberg R, von Ammon K, et al. In vivo assessment of brain tumours using positron emission tomog-raphy and 1-124 iodo-dexyuridine. J Neurooncol 1996; 30: 97.
  • Tucker SL, Thames HD. The effect of patient-to-patient variability on the accuracy of predictive assays of tumor response to radiotherapy: a theoretical analysis. Int J Radiat Oncol Biol Phys 1989; 17: 145–57.
  • Nilsson S, Carlsson J, Larsson B, Ponten J. Survival of irradiated glia and glioma cells studied with a new cloning technique. Int J Radiat Biol 1980; 37: 267–79.
  • Burkard W, Larsson B. Towards individualization and opti-mization of radiation therapy: biological behaviours of tu-mor cells derived from human tumor biopsies. In: Amaldi U, Larsson B, eds. Hadron Therapy in Oncology. Excerpta Medica: Int Congress Series Vol 1077. Amsterdam, NL: Elsevier Science B.V, 1994: 735–41.
  • Larsson B. Kompaktzellkulturscheibe. International Patent Application PCT/CH96/00332, 1996.
  • Larsson B. Pretherapeutic physical experiments with high energy protons. Br J Radiol 1961; 34: 143–51.
  • Beer JZ, Mend J, Horng M, Evans HH. Dose rate depen-dence of the cytotoxic and mutagenic effects during chronic X irradiation of radioresistant and radiosensitive L5178Y cells. Proc Ann Meet Radiat Res Soc 1993; 34: 115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.