1,109
Views
2
CrossRef citations to date
0
Altmetric
EDITORIALS

Bridging imaging and therapy: the role of medical physics in development of precision cancer care

, , &

References

  • Muren LP, Petersen JB, Hansen J, et al. Medical physics in the Nordic countries: the past, the present and the future. Acta Oncol. 2009;48:165–168.
  • Fiorino C, Muren LP, Clark CH, et al. Expanding the scientific role of medical physics in radiotherapy: time to act. Radiother Oncol. 2015;117:401–402.
  • Muren LP, Jornet N, Georg D, et al. Improving radiotherapy through medical physics developments. Radiother Oncol. 2015;117:403–406.
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–577.
  • Berkovic P, Paelinck L, Lievens Y, et al. Adaptive radiotherapy for locally advanced non-small cell lung cancer, can we predict when and for whom? Acta Oncol. 2015;54:1438–1444.
  • Thornqvist S, Hysing LB, Tuomikoski L, et al. Adaptive radiotherapy strategies for pelvic tumors: a systematic review of clinical implementations. Acta Oncol. 2016;55:943–958.
  • van de Schoot AJ, de Boer P, Crama KF, et al. Dosimetric advantages of proton therapy compared with photon therapy using an adaptive strategy in cervical cancer. Acta Oncol. 2016;55:892–899.
  • Grau C, Muren LP, Hoyer M, et al. Image-guided adaptive radiotherapy - integration of biology and technology to improve clinical outcome. Acta Oncol. 2008;47:1182–1185.
  • Muren LP, Glimelius B. And they lived happily ever after… The marriage of Nordic Association for Clinical Physics and Acta Oncologica. Acta Oncol. 2011;50:835–837.
  • Nystrom H, Blomqvist E, Hoyer M, et al. Particle therapy: a next logical step in the improvement of radiotherapy. Acta Oncol. 2011;50:741–744.
  • Muren LP, Teras M, Knuuti J. NACP 2014 and the Turku PET symposium: the interaction between therapy and imaging. Acta Oncol. 2014;53:993–996.
  • Sabater S, Pastor-Juan Mdel R, Berenguer R, et al. Analysing the integration of MR images acquired in a non-radiotherapy treatment position into the radiotherapy workflow using deformable and rigid registration. Radiother Oncol. 2016;119:179–184.
  • Brunt JN. Computed tomography-magnetic resonance image registration in radiotherapy treatment planning. Clin Oncol. 2010;22:688–697.
  • Leibfarth S, Monnich D, Welz S, et al. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning. Acta Oncol. 2013;52:1353–1359.
  • Nyholm T, Jonsson J. Counterpoint: opportunities and challenges of a magnetic resonance imaging-only radiotherapy work flow. Semin Radiat Oncol. 2014;24:175–180.
  • Kim J, Garbarino K, Schultz L, et al. Dosimetric evaluation of synthetic CT relative to bulk density assignment-based magnetic resonance-only approaches for prostate radiotherapy. Radiat Oncol. 2015;10:239.
  • Johansson A, Garpebring A, Karlsson M, et al. Improved quality of computed tomography substitute derived from magnetic resonance (MR) data by incorporation of spatial information: potential application for MR-only radiotherapy and attenuation correction in positron emission tomography. Acta Oncol. 2013;52:1369–1373.
  • Christiansen RL, Jensen HR, Brink B. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer. Acta Oncol. 2017;56:787–791.
  • Kemppainen R, Suilamo S, Tuokkola T, et al. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. Acta Oncol. 2017;56:792–798.
  • Haack S, Kallehauge JF, Jespersen SN, et al. Correction of diffusion-weighted magnetic resonance imaging for brachytherapy of locally advanced cervical cancer. Acta Oncol. 2014;53:1073–1078.
  • Jager EA, Ligtenberg H, Caldas-Magalhaes J, et al. Validated guidelines for tumor delineation on magnetic resonance imaging for laryngeal and hypopharyngeal cancer. Acta Oncol. 2016;55:1305–1312.
  • Sander L, Langkilde NC, Holmberg M, et al. MRI target delineation may reduce long-term toxicity after prostate radiotherapy. Acta Oncol. 2014;53:809–814.
  • van de Schoot AJ, de Boer P, Buist MR, et al. Quantification of delineation errors of the gross tumor volume on magnetic resonance imaging in uterine cervical cancer using pathology data and deformation correction. Acta Oncol. 2015;54:224–231.
  • Damkjær S, Thomsen JB, Petersen SI, et al. A modeling study of functional magnetic resonance imaging to individualize target definition of seminal vesicles for external beam radiotherapy. Acta Oncol. 2017;56:799–805.
  • Steenbergen P, Haustermans K, Lerut E, et al. Prostate tumor delineation using multiparametric magnetic resonance imaging: inter-observer variability and pathology validation. Radiother Oncol. 2015;115:186–190.
  • Torheim T, Malinen E, Hole KH, et al. Autodelineation of cervical cancers using multiparametric magnetic resonance imaging and machine learning. Acta Oncol. 2017;56:806–812.
  • Bakke KM, Hole KH, Dueland S, et al. Diffusion-weighted magnetic resonance imaging of rectal cancer: tumour volume and perfusion fraction predicts chemoradiotherapy response and survival. Acta Oncol. 2017;56:813–818.
  • Chen L, Liu M, Bao J, et al. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One. 2013;8:e79008.
  • Horsman MR, Mortensen LS, Petersen JB, et al. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–687.
  • Thorwarth D, Alber M. Implementation of hypoxia imaging into treatment planning and delivery. Radiother Oncol. 2010;97:172–175.
  • Lindblom E, Dasu A, Uhrdin A, et al. Defining the hypoxic target volume based on positron emission tomography for image guided radiotherapy: the influence of the choice of the reference region and conversion function. Acta Oncol. 2017;56:819–825.
  • Hoskin PJ. Hypoxia dose painting in prostate and cervix cancer. Acta Oncol. 2015;54:1259–1262.
  • Arnesen MR, Knudtsen IS, Rekstad BL, et al. Dose painting by numbers in a standard treatment planning system using inverted dose prescription maps. Acta Oncol. 2015;54:1607–1613.
  • Holm AIS, Petersen JBB, Muren LP, et al. Functional image guided dose escalation in gliomas using of state-of-the-art photon vs. proton therapy. Acta Oncol. 2017;56:826–831.
  • Muren LP, Rossi C, Hug E, et al. Establishing and expanding the indications for proton and particle therapy. Acta Oncol. 2013;52:459–462.
  • Mondlane G, Gubanski M, Lind PA, et al. Comparison of gastric-cancer radiotherapy performed with volumetric modulated arc therapy or single-field uniform dose proton therapy. Acta Oncol. 2017;56:832–838.
  • Busch K, Andersen AG, Casares-Magaz O, et al. Evaluating the influence of organ motion during photon vs. proton therapy for locally advanced prostate cancer using biological models. Acta Oncol. 2017;56:839–845.
  • Andersen AG, Casares-Magaz O, Petersen J, et al. Beam angle evaluation to improve inter-fraction motion robustness in pelvic lymph node irradiation with proton therapy. Acta Oncol. 2017;56:846–852.
  • Gorgisyan J, Perrin R, Lomax AJ, et al. Impact of beam angle choice on pencil beam scanning breath-hold proton therapy for lung lesions. Acta Oncol. 2017;56:853–859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.