1,596
Views
6
CrossRef citations to date
0
Altmetric
EDITORIAL

Rethink radiotherapy – BIGART 2017

, , , , , , , ORCID Icon & show all

References

  • Grau C, Høyer M, Lindegaard J, et al. The emerging evidence for Stereotactic Body Radiotherapy. Acta Oncol. 2006;45:771–774.
  • Grau C, Muren LP, Høyer M, et al. Image-guided adaptive radiotherapy – integration of biology and technology to improve clinical outcome. Acta Oncol. 2008;47:1182–1185.
  • Muren LP, Rossi C, Hug E, et al. Establishing and expanding the indications for proton and particle therapy. Acta Oncol. 2013;52:459–462.
  • Grau C, Olsen DR, Overgaard J, et al. Biology-guided adaptive radiation therapy – presence or future? Acta Oncol. 2010;49:884–887.
  • Grau C, Høyer M, Alber M, et al. Biology-guided adaptive radiotherapy (BiGART) – more than a vision? Acta Oncol. 2013;52:1243–1247.
  • Grau C, Overgaard J, Høyer M, et al. Biology-guided adaptive radiotherapy (BiGART) is progressing towards clinical reality. Acta Oncol. 2015;54:1245–1250.
  • Caldas-Magalhaes J, Kooij N, Ligtenberg H, et al. The accuracy of target delineation in laryngeal and hypopharyngeal cancer. Acta Oncol. 2015;54:1181–1187.
  • Edmund JM, Andreasen D, Mahmood F, et al. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain. Acta Oncol. 2015;54:1496–1500.
  • Grønborg C, Vestergaard A, Høyer M, et al. Intra-fractional bladder motion and margins in adaptive radiotherapy for urinary bladder cancer. Acta Oncol. 2015;54:1461–1466.
  • Mahmood F, Johannesen HH, Geertsen P, et al. The effect of region of interest strategies on apparent diffusion coefficient assessment in patients treated with palliative radiation therapy to brain metastases. Acta Oncol. 2015;54:1529–1534.
  • Martin S, Johnson C, Brophy M, et al. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy. Acta Oncol. 2015;54:322–332.
  • Polders DL, Steggerda M, van Herk M, et al. Establishing implantation uncertainties for focal brachytherapy with I-125 seeds for the treatment of localized prostate cancer. Acta Oncol. 2015;54:839–846.
  • Casares-Magaz O, Thor M, Liao D, et al. An image-based method to quantify biomechanical properties of the rectum in radiotherapy of prostate cancer. Acta Oncol. 2015;54:1335–1342.
  • Feng Y, Welsh D, McDonald K, et al. Identifying the dominant prostate cancer focal lesion using image analysis and planning of a simultaneous integrated stereotactic boost. Acta Oncol. 2015;54:1543–1550.
  • Hoskin PJ. Hypoxia dose painting in prostate and cervix cancer. Acta Oncol. 2015;54:1259–1262.
  • Haack S, Tanderup K, Kallehauge JF, et al. Diffusion-weighted magnetic resonance imaging during radiotherapy of locally advanced cervical cancer-treatment response assessment using different segmentation methods. Acta Oncol. 2015;54:1535–1542.
  • Intven M, Monninkhof EM, Reerink O, et al. Combined T2w volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer. Acta Oncol. 2015;54:1729–1736.
  • Iversen AB, Ringgaard S, Laustsen C, et al. Hyperpolarized magnetic resonance spectroscopy for assessing tumor hypoxia. Acta Oncol. 2015;54:1393–1398.
  • Lakosi F, de Cuypere M, Viet Nguyen P, et al. Clinical efficacy and toxicity of radio-chemotherapy and magnetic resonance imaging-guided brachytherapy for locally advanced cervical cancer patients: a mono-institutional experience. Acta Oncol. 2015;54:1558–1566.
  • Møller S, Lundemann M, Law I, et al. Early changes in perfusion of glioblastoma during radio- and chemotherapy evaluated by T1-dynamic contrast enhanced magnetic resonance imaging. Acta Oncol. 2015;54:1521–1528.
  • Mönnich D, Welz S, Thorwarth D, et al. Robustness of quantitative hypoxia PET image analysis for predicting local tumor control. Acta Oncol. 2015;54:1364–1369.
  • Nkhali L, Thureau S, Edet-Sanson A, et al. FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer: reducing target volumes to deliver higher radiotherapy doses. Acta Oncol. 2015;54:909–915.
  • Noel CE, Parikh PJ, Spencer CR, et al. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol. 2015;54:1474–1482.
  • Pitman KE, Rusten E, Kristian A, et al. Variability of dynamic 18F-FDG-PET data in breast cancer xenografts. Acta Oncol. 2015;54:1399–1407.
  • Ramlov A, Kroon PS, Jürgenliemk-Schulz IM, et al. Impact of radiation dose and standardized uptake value of (18)FDG PET on nodal control in locally advanced cervical cancer. Acta Oncol. 2015;54:1567–1573.
  • Rasmussen GB, Vogelius IR, Rasmussen JH, et al. Immunohistochemical biomarkers and FDG uptake on PET/CT in head and neck squamous cell carcinoma. Acta Oncol. 2015;54:1408–1415.
  • Rasmussen JH, Vogelius IR, Aznar MC, et al. Spatio-temporal stability of pre-treatment 18F-Fludeoxyglucose uptake in head and neck squamous cell carcinomas sufficient for dose painting. Acta Oncol. 2015;54:1416–1422.
  • Sand HM, Brunø AH, Andersen LJ, et al. Correlation between pretreatment FDG-PET biological target volume and location of T-site failure after definitive radiation therapy for head and neck cancers. Acta Oncol. 2015;54:1682–1685.
  • van Dijk LK, Boerman OC, Kaanders JH, et al. Epidermal growth factor receptor imaging in human head and neck cancer xenografts. Acta Oncol. 2015;54:1263–1267.
  • Wack LJ, Mönnich D, van Elmpt W, et al. Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia – a simulation study. Acta Oncol. 2015;54:1370–1377.
  • Wilbers J, Meijer FJ, Kappelle AC, et al. Magnetic resonance imaging of the carotid artery in long-term head and neck cancer survivors treated with radiotherapy. Acta Oncol. 2015;54:1175–1180.
  • Zegers CM, van Elmpt W, Hoebers FJ, et al. Imaging of tumour hypoxia and metabolism in patients with head and neck squamous cell carcinoma. Acta Oncol. 2015;54:1378–1384.
  • Zschaeck S, Haase R, Abolmaali N, et al. Spatial distribution of FMISO in head and neck squamous cell carcinomas during radio-chemotherapy and its correlation to pattern of failure. Acta Oncol. 2015;54:1355–1363.
  • Berkovic P, Paelinck L, Lievens Y, et al. Adaptive radiotherapy for locally advanced non-small cell lung cancer, can we predict when and for whom? Acta Oncol. 2015;54:1438–1444.
  • Joye I, Verstraete J, Bertoncini C, et al. Implementation of volumetric modulated arc therapy for rectal cancer: pitfalls and challenges. Acta Oncol. 2015;54:1677–1681.
  • Korhonen J, Kapanen M, Sonke JJ, et al. Feasibility of MRI-based reference images for image-guided radiotherapy of the pelvis with either cone-beam computed tomography or planar localization images. Acta Oncol. 2015;54:889–895.
  • Kurz C, Dedes G, Resch A, et al. Comparing cone-beam CT intensity correction methods for dose recalculation in adaptive intensity-modulated photon and proton therapy for head and neck cancer. Acta Oncol. 2015;54:1651–1657.
  • Majercakova K, Pötter R, Kirisits C, et al. Evaluation of planning aims and dose prescription in image-guided adaptive brachytherapy and radiochemotherapy for cervical cancer: Vienna clinical experience in 225 patients from 1998 to 2008. Acta Oncol. 2015;54:1551–1557.
  • Najim M, Perera L, Bendall L, et al. Volumetric and dosimetric changes to salivary glands during radiotherapy for head and neck cancer. Acta Oncol. 2015;54:1691–1693.
  • Nielsen MS, Østergaard LR, Carl J. A new method to validate thoracic CT-CT deformable image registration using auto-segmented 3D anatomical landmarks. Acta Oncol. 2015;54:1515–1520.
  • Nyeng TB, Nordsmark M, Hoffmann L. Dosimetric evaluation of anatomical changes during treatment to identify criteria for adaptive radiotherapy in oesophageal cancer patients. Acta Oncol. 2015;54:1467–1473.
  • Persoon LC, Podesta M, Hoffmann L, et al. Is integrated transit planar portal dosimetry able to detect geometric changes in lung cancer patients treated with volumetric modulated arc therapy? Acta Oncol. 2015;54:1501–1507.
  • Petersen PM, Aznar MC, Berthelsen AK, et al. Prospective phase II trial of image-guided radiotherapy in Hodgkin lymphoma: benefit of deep inspiration breath-hold. Acta Oncol. 2015;54:60–66.
  • Sibolt P, Ottosson W, Sjöström D, et al. Adaptation requirements due to anatomical changes in free-breathing and deep-inspiration breath-hold for standard and dose-escalated radiotherapy of lung cancer patients. Acta Oncol. 2015;54:1453–1460.
  • Fujii O, Demizu Y, Hashimoto N, et al. Particle therapy for clinically diagnosed stage I lung cancer: comparison with pathologically proven non-small cell lung cancer. Acta Oncol. 2015;54:315–321.
  • Góra J, Kuess P, Stock M, et al. ART for head and neck patients: on the difference between VMAT and IMPT. Acta Oncol. 2015;54:1166–1174.
  • Jakobi A, Stützer K, Bandurska-Luque A, et al. NTCP reduction for advanced head and neck cancer patients using proton therapy for complete or sequential boost treatment versus photon therapy. Acta Oncol. 2015;54:1658–1664.
  • Kole TP, Nichols RC, Lei S, et al. A dosimetric comparison of ultra-hypofractionated passively scattered proton radiotherapy and stereotactic body radiotherapy (SBRT) in the definitive treatment of localized prostate cancer. Acta Oncol. 2015;54:825–831.
  • Lassen-Ramshad Y, Petersen JB, Tietze A, et al. Pseudoprogression after proton radiotherapy for pediatric low grade glioma. Acta Oncol. 2015;54:1701–1702.
  • Makita C, Nakamura T, Takada A, et al. High-dose proton beam therapy for stage I non-small cell lung cancer: clinical outcomes and prognostic factors. Acta Oncol. 2015;54:307–314.
  • Belli ML, Fiorino C, Zerbetto F, et al. Early volume variation of positive lymph nodes assessed by in-room mega voltage CT images predicts risk of loco-regional relapses in head and neck cancer patients treated with intensity-modulated radiotherapy. Acta Oncol. 2015;54:1490–1495.
  • Haas RL, Gelderblom H, Sleijfer S, et al. A phase I study on the combination of neoadjuvant radiotherapy plus pazopanib in patients with locally advanced soft tissue sarcoma of the extremities. Acta Oncol. 2015;54:1195–1201.
  • Jakobsen A, Andersen F, Fischer A, et al. Neoadjuvant chemotherapy in locally advanced colon cancer. A phase II trial. Acta Oncol. 2015;54:1747–1753.
  • Lassen P, Eriksen JG, Krogdahl A, et al. The influence of HPV-associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer: evaluation of the randomised DAHANCA 6&7 trial. Radiother Oncol. 2011;100:49–55.
  • Lilja-Fischer JK, Jensen K, Eskildsen HW, et al. Response evaluation of the neck in oropharyngeal cancer: value of magnetic resonance imaging and influence of p16 in selecting patients for post-radiotherapy neck dissection. Acta Oncol. 2015;54:1599–1606.
  • Pereira AA, Rego JF, Munhoz RR, et al. The impact of complete chemotherapy stop on the overall survival of patients with advanced colorectal cancer in first-line setting: a meta-analysis of randomized trials. Acta Oncol. 2015;54:1737–1746.
  • Rønjom MF, Brink C, Bentzen SM, et al. External validation of a normal tissue complication probability model for radiation-induced hypothyroidism in an independent cohort. Acta Oncol. 2015;54:1301–1309.
  • Stokkevåg CH, Engeseth GM, Hysing LB, et al. Risk of radiation-induced secondary rectal and bladder cancer following radiotherapy of prostate cancer. Acta Oncol. 2015;54:1317–1325.
  • Thor M, Olsson CE, Oh JH, et al. Relationships between dose to the gastro-intestinal tract and patient-reported symptom domains after radiotherapy for localized prostate cancer. Acta Oncol. 2015;54:1326–1334.
  • Tuomikoski L, Kapanen M, Collan J, et al. Toward a more patient-specific model of post-radiotherapy saliva secretion for head and neck cancer patients. Acta Oncol. 2015;54:1310–1316.
  • Van den Bergh L, Joniau S, Haustermans K, et al. Reliability of sentinel node procedure for lymph node staging in prostate cancer patients at high risk for lymph node involvement. Acta Oncol. 2015;54:896–902.
  • Winther M, Alsner J, Tramm T, et al. Evaluation of miR-21 and miR-375 as prognostic biomarkers in esophageal cancer. Acta Oncol. 2015;54:1582–1591.
  • Winther-Larsen A, Hoffmann L, Moeller DS, et al. Evaluation of factors associated with loco-regional failure and survival in limited disease small cell lung cancer patients treated with chemoradiotherapy. Acta Oncol. 2015;54:1574–1581.
  • Hansen CR, Johansen J, Kristensen CA, et al. Quality assurance of radiation therapy for head and neck cancer patients treated in DAHANCA 10 randomized trial. Acta Oncol. 2015;54:1669–1673.
  • Hermans BC, Persoon LC, Podesta M, et al. Weekly kilovoltage cone-beam computed tomography for detection of dose discrepancies during (chemo)radiotherapy for head and neck cancer. Acta Oncol. 2015;54:1483–1489.
  • Bøjen A, Vestergaard A, Hoffmann L, et al. A learning programme qualifying radiation therapists to manage daily online adaptive radiotherapy. Acta Oncol. 2015;54:1697–1701.
  • Borras JM, Lievens Y, Grau C. The need for radiotherapy in Europe in 2020: not only data but also a cancer plan. Acta Oncol. 2015;54:1268–1274.
  • Lambin P, Zindler J, Vanneste B, et al. Modern clinical research: how rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncol. 2015;54:1289–1300.
  • Lievens Y, Borras JM, Grau C. Cost calculation: a necessary step towards widespread adoption of advanced radiotherapy technology. Acta Oncol. 2015;54:1275–1281.
  • Massaccesi M, Corti M, Azario L, et al. Can automation in radiotherapy reduce costs? Acta Oncol. 2015;54:1282–1288.
  • Molinari AJ, Thorp SI, Portu AM, et al. Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels. Acta Oncol. 2015;54:99–106.
  • Pignol JP, Janus C. The evaluation of innovation in radiation oncology – what can we do and what should we do? Acta Oncol. 2015;54:1251–1253.
  • Overgaard J. Radiotherapy. Gazing at the crystal ball of European radiotherapy. Nat Rev Clin Oncol. 2015;12:5–6.
  • Weber DC, Abrunhosa-Branquinho A, Bolsia A, et al. Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire. Radiother Oncol. 2017;124:185–189.
  • Verma V, Simone CB, Wahl AO, et al. Proton radiotherapy for gynecologic neoplasms. Acta Oncol. 2016;55:1257–1265.
  • Seco J, Spadea MF. Imaging in particle therapy: state of the art and future perspective. Acta Oncol. 2015;54:1254–1258.
  • Malinen E, Søvik Å. Dose or ‘LET’ painting – what is optimal in particle therapy of hypoxic tumors? Acta Oncol. 2015;54:1614–1622.
  • Rieber JG, Kessel KA, Witt O, et al. Treatment tolerance of particle therapy in pediatric patients. Acta Oncol. 2015;54:1049–1055.
  • Baumann M, Krause M, Overgaard J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–249.
  • Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59:R419–R472.
  • Mohan R, Peeler CR, Guan F, et al. Radiobiological issues in proton therapy. Acta Oncol. 2017;56:1367–1373.
  • Jones B. Clinical radiobiology of proton therapy: modeling of RBE. Acta Oncol. 2017;56:1374–1378.
  • Paganetti H. Relating the proton relative biological effectiveness to tumor control and normal tissue complication probabilities assuming inter-patient variability in α/β. Acta Oncol. 2017;56:1379–1386.
  • Peeler CR, Mirkovic D, Titt U, et al. Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. 2016;121:395–401.
  • Saager M, Glowa C, Peschke P, et al. The relative biological effectiveness of carbon ion irradiations of the rat spinal cord increases linearly with LET up to 99 keV/μm. Acta Oncol. 2016;55:1512–1515.
  • Sørensen BS, Horsman MR, Alsner J, et al. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol. 2015;54:1623–1630.
  • Sørensen BS, Bassler N, Nielsen S, et al. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo. Acta Oncol. 2017;56:1387–1391.
  • Nielsen S, Bassler N, Grzanka L, et al. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation. Acta Oncol. 2017;56:1406–1412.
  • Andreassen CN, Rosenstein BS, Kerns SL, et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother Oncol. 2016;121:431–439.
  • De Ruysscher D, Defraene G, Ramaekers BL, et al. Optimal design and patient selection for interventional trials using radiogenomic biomarkers: a REQUITE and Radiogenomics consortium statement. Radiother Oncol. 2016;121:440–446.
  • Alsner J, Andreassen CN, Overgaard J. Genetic markers for prediction of normal tissue toxicity after radiotherapy. Semin Radiat Oncol. 2008;18:126–135.
  • Grau C. The model-based approach to clinical studies in particle radiotherapy – a new concept in evidence based radiation oncology? Radiother Oncol. 2013;107:265–266.
  • Langendijk JA, Lambin P, De Ruysscher D, et al. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol. 2013;107:267–273.
  • Blanchard P, Wong AJ, Gunn GB, et al. Toward a model-based patient selection strategy for proton therapy: external validation of photon-derived normal tissue complication probability models in a head and neck proton therapy cohort. Radiother Oncol. 2016;121:381–386.
  • Bijman RG, Breedveld S, Arts T, et al. Impact of model and dose uncertainty on model-based selection of oropharyngeal cancer patients for proton therapy. Acta Oncol. 2017;56:1444–1450.
  • Karsch L, Beyreyther E, Enghardt W, et al. Towards ion beam therapy based on laser plasma accelerators. Acta Oncol. 2017;56:1359–1366.
  • Henry T, Bassler N, Ureba A, et al. Development of an interlaced-crossfiring geometry for proton grid therapy. Acta Oncol. 2017;56:1437–1443.
  • Mako F, Tajima T. Collective ion acceleration by a reflexing electron beam: model and scaling. Phys Fluids. 1984;27:1815–1820.
  • Snavely RA, Key MH, Hatchet SP, et al. Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys Rev Lett. 2000;85:2945–2948.
  • Schwoerer H, Pfotenhauer S, Jäckel O, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature. 2006;439:445–448.
  • Schippers JM, Lomax AJ. Emerging technologies in proton therapy. Acta Oncol. 2011;50:838–850.
  • Köhler A. Une nouvelle méthode permettant de faire agir, dans la profondeur des tissus, de hautes doses de rayons Roentgen et un moyen nouveau de protection contre les radiodermites. Ann Electrobiol Radiol. 1909;10:661–664.
  • Mohiuddin M, Fujita M, Regine WF, et al. High-dose spatially-fractionated radiation (GRID): a new paradigm in the management of advanced cancers. Int J Radiat Oncol Biol Phys. 1999;45:721–727.
  • Jin JY, Zhao B, Kaminski JM, et al. A MLC-based inversely optimized 3D spatially fractionated grid radiotherapy technique. Radiother Oncol. 2015;117:483–486.
  • Narayanasamy G, Zhang X, Meigooni A, et al. Therapeutic benefits in grid irradiation on tomotherapy for bulky, radiation-resistant tumors. Acta Oncol. 2017;56:1043–1047.
  • Peng V, Suchowerska N, Rogers L, et al. Grid therapy using high definition multileaf collimators: realizing benefits of the bystander effect. Acta Oncol. 2017;56:1048–1059.
  • Bouchet A, Lemasson B, Christen T, et al. Synchrotron microbeam radiation therapy induces hypoxia in intracerebral gliosarcoma but not in the normal brain. Radiother Oncol. 2013;108:143–148.
  • Prezado Y, Fois GR. Proton-minibeam radiation therapy: a proof of concept. Med Phys. 2013;40:031712.
  • Hansen DC, Seco J, Sørensen TS, et al. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark. Acta Oncol. 2015;54:1638–1642.
  • Hopfgartner J, Stock M, Knäusl B, et al. Robustness of IMPT treatment plans with respect to inter-fractional set-up uncertainties: impact of various beam arrangements for cranial targets. Acta Oncol. 2013;52:570–579.
  • Andersen AG, Casares-Magaz O, Muren LP, et al. A method for evaluation of proton plan robustness towards inter-fractional motion applied to pelvic lymph node irradiation. Acta Oncol. 2015;54:1643–1650.
  • Gorgisyan J, Perrin R, Lomax AJ, et al. Impact of beam angle choice on pencil beam scanning breath-hold proton therapy for lung lesions. Acta Oncol. 2017;56:853–859.
  • Gravgaard Andersen A, Casares-Magaz O, Petersen J, et al. Beam angle evaluation to improve inter-fraction motion robustness in pelvic lymph node irradiation with proton therapy. Acta Oncol. 2017;56:846–852.
  • Zeng C, Plastaras JP, James P, et al. Proton pencil beam scanning for mediastinal lymphoma: treatment planning and robustness assessment. Acta Oncol. 2016;55:1132–1138.
  • Kang M, Huang S, Solberg TD, et al. A study of the beam-specific interplay effect in proton pencil beam scanning delivery in lung cancer. Acta Oncol. 2017;56:531–540.
  • Santiago A, Fritz P, Mühlnickel W, et al. Changes in the radiological depth correlate with dosimetric deterioration in particle therapy for stage I NSCLC patients under high frequency jet ventilation. Acta Oncol. 2015;54:1631–1637.
  • Jensen CA, Roa AMA, Lund J-Å, et al. Intrafractional baseline drift during free breathing breast cancer radiation therapy. Acta Oncol. 2017;56:867–873.
  • Poulsen PR, Worm ES, Hansen R, et al. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: first results. Acta Oncol. 2015;54:1445–1452.
  • Lutz CM, Poulsen PR, Fledelius W, et al. Setup error and motion during deep inspiration breath-hold breast radiotherapy measured with continuous portal imaging. Acta Oncol. 2016;55:193–200.
  • Lens E, van der Horst A, Versteijne E, et al. Considerable pancreatic tumor motion during breath-holding. Acta Oncol. 2016;55:1360–1368.
  • Skyttä T, Kapanen N, Laaksomaa M, et al. Improving the reproducibility of voluntary deep inspiration breath hold technique during adjuvant left-sided breast cancer radiotherapy. Acta Oncol. 2016;55:970–975.
  • Müller J, Neubert C, von Neubeck C, et al. Proton radiography for inline treatment planning verification of small animals. Acta Oncol. 2017;56:1399–1405.
  • Ulrich S, Wieser H-P, Cao W, et al. Impact of respiratory motion on variable relative biological effectiveness in 4D-dose distributions of proton therapy. Acta Oncol. 2017;56:1420–1427.
  • Ödén J, Toma-Dasu I, Eriksson K, et al. The influence of breathing motion and a variable relative biological effectiveness in proton therapy of left-sided breast cancer. Acta Oncol. 2017;56:1428–1436.
  • Abravan A, Knudtsen I, Eide H, et al. A new method to assess pulmonary changes using 18F-fluoro-2-deoxyglucose positron emission tomography for lung cancer patients following radiotherapy. Acta Oncol. 2017;56:1601–1607.
  • Rao SD, Saleh ZH, Setton J, et al. Dose-volume factors correlating with trismus following chemoradiation for head and neck cancer. Acta Oncol. 2016;55:99–104.
  • Abe T, Shirai K, Saitoh J-I, et al. Incidence, risk factors, and dose-volume relationship of radiation-induced rib fracture after carbon ion radiotherapy for lung cancer. Acta Oncol. 2016;55:163–166.
  • Khalil AA, Hoffmann L, Møller DS, et al. New dose constraint reduces radiation-induced fatal pneumonitis in locally advanced non-small cell lung cancer patients treated with intensity-modulated radiotherapy. Acta Oncol. 2015;54:1343–1349.
  • Kirchheiner K, Nout RA, Lindegaard JC, et al. Dose-effect relationship and risk factors for vaginal stenosis after definitive radio(chemo)therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother Oncol. 2016;118:160–166.
  • Schack LMH, Petersen SE, Nielsen S, et al. Validation of genetic predictors of late radiation-induced morbidity in prostate cancer patients. Acta Oncol. 2017;56:1518–1525.
  • Andreassen CN. Searching for genetic determinants of normal tissue radiosensitivity – are we on the right track? Radiother Oncol. 2010;97:1–8.
  • Barnett GC, Elliott RM, Alsner J, et al. Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity. Radiother Oncol. 2012;105:289–295.
  • Oh JH, Kerns S, Ostrer H, et al. Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes. Sci Rep. 2017;7:43381.
  • Ramaekers BLT, Joore MA, Grutters JPC, et al. The impact of late treatment-toxicity on generic health-related quality of life in head and neck cancer patients after radiotherapy. Oral Oncol. 2011;47:768–774.
  • Bentzen SM, Vaeth M, Pedersen DE, et al. Why actuarial estimates should be used in reporting late normal-tissue effects of cancer treatment … now! Int J Radiat Oncol Biol Phys. 1995;32:1531–1534.
  • Pedersen D, Bentzen SM, Overgaard J. Early and late radiotherapeutic morbidity in 442 consecutive patients with locally advanced carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1994;29:941–952.
  • Bentzen SM, Balslev I, Pedersen M, et al. Time to loco-regional recurrence after resection of Dukes’ B and C colorectal cancer with or without adjuvant postoperative radiotherapy. A multivariate regression analysis. Br J Cancer. 1992;65:102–107.
  • Bogowicz M, Riesterer O, Stark LS, et al. Comparison of PET and CT radiomics for prediction of local tumor recurrence in head and neck squamous cell carcinoma. Acta Oncol. 2017;56:1535–1540.
  • Leijenaar RTH, Carvalho S, Hoebers FJ, et al. External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma. Acta Oncol. 2015;54:1423–1429.
  • Huynh E, Coroller TP, Narayan V, et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol. 2016;120:258–266.
  • van Timmeren JE, Leijenaar RTH, van Elmpt W, et al. Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol. 2017;123:363–369.
  • van Timmeren JE, Leijenaar RTH, van Elmpt W, et al. Feature selection methodology for longitudinal cone-beam CT radiomics. Acta Oncol. 2017;56:1541–1547.
  • Booth JT, Caillet V, Hardcastle N, et al. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR. Radiother Oncol. 2016;121:19–25.
  • Brouwer CL, Steenbakkers RJ, van der Schaaf A, et al. Selection of head and neck cancer patients for adaptive radiotherapy to decrease xerostomia. Radiother Oncol. 2016;120:36–40.
  • Brown E, Owen R, Harden F, et al. Predicting the need for adaptive radiotherapy in head and neck cancer. Radiother Oncol. 2015;116:57–63.
  • Fokdal L, Sturdza A, Mazeron R, et al. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: analysis from the retroEMBRACE study. Radiother Oncol. 2016;120:434–440.
  • Hamming-Vrieze O, van Kranen SR, Heemsbergen WD, et al. Analysis of GTV reduction during radiotherapy for oropharyngeal cancer: implications for adaptive radiotherapy. Radiother Oncol. 2017;122:224–228.
  • Kirisits C, Federico M, Nkiwane K, et al. Quality assurance in MR image guided adaptive brachytherapy for cervical cancer: final results of the EMBRACE study dummy run. Radiother Oncol. 2015;117:548–554.
  • Lutkenhaus LJ, de Jong R, Geijsen ED, et al. Potential dosimetric benefit of an adaptive plan selection strategy for short-course radiotherapy in rectal cancer patients. Radiother Oncol. 2016;119:525–530.
  • Mazeron R, Fokdal LU, Kirchheiner K, et al. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: results from the prospective multicenter EMBRACE study. Radiother Oncol. 2016;120:412–419.
  • McPartlin AJ, Li XA, Kershaw LE, et al. MRI-guided prostate adaptive radiotherapy – a systematic review. Radiother Oncol. 2016;119:371–380.
  • Mohamed S, Lindegaard JC, de Leeuw AA, et al. Vaginal dose de-escalation in image guided adaptive brachytherapy for locally advanced cervical cancer. Radiother Oncol. 2016;120:480–485.
  • Møller DS, Holt MI, Alber M, et al. Adaptive radiotherapy for advanced lung cancer ensures target coverage and decreases lung dose. Radiother Oncol. 2016;121:32–38.
  • Tanderup K, Lindegaard JC, Kirisits C, et al. Image Guided Adaptive Brachytherapy in cervix cancer: a new paradigm changing clinical practice and outcome. Radiother Oncol. 2016;120:365–369.
  • Tuomikoski L, Valli A, Tenhunen M, et al. A comparison between two clinically applied plan library strategies in adaptive radiotherapy of bladder cancer. Radiother Oncol. 2015;117:448–452.
  • Vestergaard A, Hafeez S, Muren LP, et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol. 2016;118:154–159.
  • Zhang P, Simon A, Rigaud B, et al. Optimal adaptive IMRT strategy to spare the parotid glands in oropharyngeal cancer. Radiother Oncol. 2016;120:41–47.
  • Berkovic P, Paelinck L, Gulyban A, et al. Adaptive radiotherapy for locally advanced non-small cell lung cancer: dosimetric gain and treatment outcome prediction. Acta Oncol. 2017;56:1660–1663.
  • Mahmood F, Johannesen HH, Geertsen P, et al. Ultra-early apparent diffusion coefficient change indicates irradiation and predicts radiotherapy outcome in brain metastases. Acta Oncol. 2017;56:1655–1657.
  • Jensen MB, Ejlertsen B, Mouridsen HT, et al. Improvements in breast cancer survival between 1995 and 2012 in Denmark: the importance of earlier diagnosis and adjuvant treatment. Acta Oncol. 2016;55(Suppl 2):24–35.
  • Lyngholm CD, Laurberg T, Alsner J, et al. Failure pattern and survival after breast conserving therapy. Long-term results of the Danish Breast Cancer Group (DBCG) 89 TM cohort. Acta Oncol. 2016;55:983–992.
  • Bodilsen A, Offersen BV, Christiansen P, et al. Pattern of relapse after breast conserving therapy, a study of 1519 early breast cancer patients treated in the Central Region of Denmark 2000–2009. Acta Oncol. 2016;55:964–969.
  • Poortmans PM, Arenas M, Livi L. Over-irradiation. Breast. 2017;31:295–302.
  • Taylor C, Correa C, Duane FK, et al. Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol. 2017;35:1641–1649.
  • Laurberg T, Alsner J, Tramm T, et al. Impact of age, intrinsic subtype and local treatment on long-term local-regional recurrence and breast cancer mortality among low-risk breast cancer patients. Acta Oncol. 2017;56:59–67.
  • Thorsen LB, Offersen BV, Danø H, et al. DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer. J Clin Oncol. 2016;34:314–320.
  • Santos AM, Marcu LG, Wong CM, et al. Risk estimation of second primary cancers after breast radiotherapy. Acta Oncol. 2016;55:1331–1337.
  • Moiseenko V, Einck J, Murphy J, et al. Clinical evaluation of QUANTEC guidelines to predict the risk of cardiac mortality in breast cancer patients. Acta Oncol. 2016;55:1506–1510.
  • Højris I, Andersen J, Overgaard M, et al. Late treatment-related morbidity in breast cancer patients randomized to postmastectomy radiotherapy and systemic treatment versus systemic treatment alone. Acta Oncol. 2000;39:355–372.
  • Tramm T, Kyndi M, Myhre S, et al. Relationship between the prognostic and predictive value of the intrinsic subtypes and a validated gene profile predictive of loco-regional control and benefit from post-mastectomy radiotherapy in patients with high-risk breast cancer. Acta Oncol. 2014;53:1337–1346.
  • Lyngholm CD, Overgaard J, Christiansen PM, et al. Validation of a gene expression profile predictive of the risk of radiation-induced fibrosis in women treated with breast conserving therapy. Acta Oncol. 2015;54:1665–1668.
  • Schack LH, Alsner J, Overgaard J, et al. Radiation-induced morbidity evaluated by high-frequency ultrasound. Acta Oncol. 2016;55:1498–1500.
  • Lin LL, Vennarini S, Dimofte A, et al. Proton beam versus photon beam dose to the heart and left anterior descending artery for left-sided breast cancer. Acta Oncol. 2015;54:1032–1039.
  • Knoop A, Andreasen PA, Andersen JA, et al. Prognostic significance of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in primary breast cancer. Br J Cancer. 1998;77:932–940.
  • Nielsen HM, Friis RB, Linnet S, et al. Loco-regional morbidity after breast conservation and axillary lymph node dissection for early breast cancer with or without regional nodes radiotherapy, perspectives in modern breast cancer treatment: the Skagen Trial 1 is active. Acta Oncol. 2017;56:713–718.
  • Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck – a systematic review and meta-analysis. Radiother Oncol. 2011;100:22–32.
  • Lacas B, Bourhis J, Overgaard J, et al. Role of radiotherapy fractionation in head and neck cancers (MARCH): an updated meta-analysis. Lancet Oncol. 2017;18:1221–1237.
  • Schernberg A, Blanchard P, Chargari C, et al. Neutrophils, a candidate biomarker and target for radiation therapy? Acta Oncol. 2017;56:1526–1534.
  • Rasmussen GB, Håkansson KE, Vogelius IR, et al. Immunohistochemical and molecular imaging biomarker signature for the prediction of failure site after chemoradiation for head and neck squamous cell carcinoma. Acta Oncol. 2017;56:1566–1574.
  • Lassen P. The role of Human papillomavirus in head and neck cancer and the impact on radiotherapy outcome. Radiother Oncol. 2010;95:371–380.
  • Sørensen BS, Busk M, Olthof N, et al. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells. Radiother Oncol. 2013;108:500–505.
  • Bøje CR, Dalton SO, Grønborg TK, et al. The impact of comorbidity on outcome in 12 623 Danish head and neck cancer patients: a population based study from the DAHANCA database. Acta Oncol. 2013;52:285–293.
  • Olsen MH, Bøje CR, Kjaer TK, et al. Socioeconomic position and stage at diagnosis of head and neck cancer – a nationwide study from DAHANCA. Acta Oncol. 2015;54:759–766.
  • Pagh A, Grau C, Overgaard J. Failure pattern and salvage treatment after radical treatment of head and neck cancer. Acta Oncol. 2016;55:625–632.
  • Bentzen J, Toustrup K, Eriksen JG, et al. Locally advanced head and neck cancer treated with accelerated radiotherapy, the hypoxic modifier nimorazole and weekly cisplatin. Results from the DAHANCA 18 phase II study. Acta Oncol. 2015;54:1001–1007.
  • Karlsson T, Bergström L, Ward E, et al. A prospective longitudinal study of voice characteristics and health-related quality of life outcomes following laryngeal cancer treatment with radiotherapy. Acta Oncol. 2016;55:693–699.
  • Møller PK, Tolstrup JS, Olsen MH, et al. Predictors of continuous tobacco smoking in a clinical cohort study of Danish laryngeal cancer patients smoking before treated with radiotherapy. Acta Oncol. 2015;54:685–692.
  • Linge A, Lohaus F, Löck S, et al. HPV status, cancer stem cell marker expression, hypoxia gene signatures and tumour volume identify good prognosis subgroups in patients with HNSCC after primary radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother Oncol. 2016;121:364–373.
  • Toustrup K, Sørensen BS, Metwally MA, et al. Validation of a 15-gene hypoxia classifier in head and neck cancer for prospective use in clinical trials. Acta Oncol. 2016;55:1091–1098.
  • Horsman MR, Mortensen LS, Petersen JB, et al. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–687.
  • Mönnich D, Thorwarth D, Leibfarth S, et al. Overlap of highly FDG-avid and FMISO hypoxic tumour subvolumes in patients with head and neck cancer. Acta Oncol. 2017;56:1581–1586.
  • Zukauskaite R, Hansen CR, Brink C, et al. Analysis of CT-verified loco-regional recurrences after definitive IMRT for HNSCC using site of origin estimation methods. Acta Oncol. 2017;56:1558–1565.
  • Differding S, Sterpin E, Janssens G, et al. Methodology for adaptive and robust FDG-PET escalated dose painting by numbers in head and neck tumors. Acta Oncol. 2016;55:217–225.
  • Bittner MI, Wiedenmann N, Bucher S, et al. Analysis of relation between hypoxia PET imaging and tissue-based biomarkers during head and neck radiochemotherapy. Acta Oncol. 2016;55:1299–1304.
  • Wittenborn TR, Horsman MR. Targeting tumour hypoxia to improve outcome of stereotactic radiotherapy. Acta Oncol. 2015;54:1385–1392.
  • Tran LB, Bol A, Labar D, et al. Predictive value of (18)F-FAZA PET imaging for guiding the association of radiotherapy with nimorazole: a preclinical study. Radiother Oncol. 2015;114:189–194.
  • Hassan Metwally MA, Ali R, Kuddu M, et al. IAEA-HypoX. A randomized multicenter study of the hypoxic radiosensitizer nimorazole concomitant with accelerated radiotherapy in head and neck squamous cell carcinoma. Radiother Oncol. 2015;116:15–20.
  • Hassan Metwally MA, Ali R, Kuddu M, et al. Radiotherapy quality assurance of the IAEA-HypoX trial of the accelerated radiotherapy in the treatment of head and neck squamous cell carcinoma with or without the hypoxic radiosensitizer nimorazole. Acta Oncol. 2015;54:1673–1677.
  • Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007;25:4066–4074.
  • Grills IS, Hope AJ, Guckenberger M, et al. A collaborative analysis of stereotactic lung radiotherapy outcomes for early-stage non-small-cell lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. J Thorac Oncol. 2012;7:1382–1393.
  • Baumann P, Nyman J, Høyer M, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol. 2009;27:3290–3296.
  • Jeppesen SS, Schytte T, Jensen HR, et al. Stereotactic body radiation therapy versus conventional radiation therapy in patients with early stage non-small cell lung cancer: an updated retrospective study on local failure and survival rates. Acta Oncol. 2013;52:1552–1558.
  • Lindberg K, Nyman J, Riesenfeld Kallskog V, et al. Long-term results of a prospective phase II trial of medically inoperable stage I NSCLC treated with SBRT – the Nordic experience. Acta Oncol. 2015;54:1096–1104.
  • Paludan M, Traberg Hansen A, Petersen J, et al. Aggravation of dyspnea in stage I non-small cell lung cancer patients following stereotactic body radiotherapy: is there a dose-volume dependency? Acta Oncol. 2006;45:818–822.
  • Stam B, Peulen H, Guckenberger M, et al. Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients. Radiother Oncol. 2017;123:370–375.
  • Guckenberger M, Andratschke N, Dieckmann K, et al. ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol. 2017;124:11–17.
  • Tekatli H, Haasbeek N, Dahele M, et al. Outcomes of hypofractionated high-dose radiotherapy in poor-risk patients with ‘ultracentral’ non-small cell lung cancer. J Thorac Oncol. 2016;11:1081–1089.
  • Dahele M, van Sörnsen de Koste JR, Verbakel WF, et al. An analysis of planned versus delivered airway doses during stereotactic lung radiotherapy for central tumors. Acta Oncol. 2016;55:934–937.
  • Lindblom E, Dasu A, Toma-Dasu I. Optimal fractionation in radiotherapy for non-small cell lung cancer – a modelling approach. Acta Oncol. 2015;54:1592–1598.
  • Moghanaki D, Karas T. Surgery versus SABR for NSCLC. Lancet Oncol. 2013;14:e490–e491.
  • Nyman J, Hallqvist A, Lund JÅ, et al. SPACE – A randomized study of SBRT vs conventional fractionated radiotherapy in medically inoperable stage I NSCLC. Radiother Oncol. 2016;121:1–8.
  • Jeppesen SS, Hansen NG, Schytte T, et al. Comparison of survival of chronic obstructive pulmonary disease patients with or without a localized non-small cell lung cancer. Lung Cancer. 2016;100:90–95.
  • Aupérin A, Le Péchoux C, Rolland E, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:2181–2190.
  • Bradley JD, Paulus R, Komaki R, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16:187–199.
  • Halvorsen TO, Sundstrøm S, Flotten O, et al. Comorbidity and outcomes of concurrent chemo- and radiotherapy in limited disease small cell lung cancer. Acta Oncol. 2016;55:1349–1354.
  • Hoffmans D, Dahele M, Senan S, et al. Can the probability of radiation esophagitis be reduced without compromising lung tumor control: a radiobiological modeling study. Acta Oncol. 2016;55:926–930.
  • Tvilum M, Khalil AA, Møller DS, et al. Clinical outcome of image-guided adaptive radiotherapy in the treatment of lung cancer patients. Acta Oncol. 2015;54:1430–1437.
  • Farr KP, Møller DS, Khalil AA, et al. Loss of lung function after chemo-radiotherapy for NSCLC measured by perfusion SPECT/CT: correlation with radiation dose and clinical morbidity. Acta Oncol. 2015;54:1350–1354.
  • Hansen O, Schytte T, Nielsen M, et al. Age dependent prognosis in concurrent chemo-radiation of locally advanced NSCLC. Acta Oncol. 2015;54:333–339.
  • Hansen O, Knap MM, Khalil A, et al. A randomized phase II trial of concurrent chemoradiation with two doses of radiotherapy, 60Gy and 66Gy, concomitant with a fixed dose of oral vinorelbine in locally advanced NSCLC. Radiother Oncol. 2017;123:276–281.
  • Møller DS, Nielsen TB, Brink C, et al. Heterogeneous FDG-guided dose-escalation for locally advanced NSCLC (the NARLAL2 trial): design and early dosimetric results of a randomized, multi-centre phase-III study. Radiother Oncol. 2017;124:311–317.
  • Valentini V, Glimelius B, Haustermans K, et al. EURECCA consensus conference highlights about rectal cancer clinical management: the radiation oncologist’s expert review. Radiother Oncol. 2014;110:195–198.
  • Swedish Rectal Cancer Trial, Cedermark B, Dahlberg M, et al. Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med. 1997;336:980–987.
  • Peeters ST, Dooms C, Van Baardwijk A, et al. Selective mediastinal node irradiation in non-small cell lung cancer in the IMRT/VMAT era: how to use E(B)US-NA information in addition to PET-CT for delineation? Radiother Oncol. 2016;120:273–278.
  • Sauer R, Liersch T, Merkel S, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30:1926–1933.
  • Valentini V, Lambin P, Myerson RJ. Is it time for tailored treatment of rectal cancer? From prescribing by consensus to prescribing by numbers. Radiother Oncol. 2012;102:1–3.
  • Sebag-Montefiore D, Stephens RJ, Steele R, et al. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet. 2009;373:811–820.
  • Valentini V, van Stiphout RG, Lammering G, et al. Selection of appropriate end-points (pCR vs 2yDFS) for tailoring treatments with prediction models in locally advanced rectal cancer. Radiother Oncol. 2015;114:302–309.
  • Valentini V, Barba MC, Gambacorta MA. The role of multimodality treatment in M0 rectal cancer: evidence and research. Eur Rev Med Pharmacol Sci. 2010;14:334–341.
  • Hall MD, Schultheiss TE, Smith DD, et al. Effect of increasing radiation dose on pathologic complete response in rectal cancer patients treated with neoadjuvant chemoradiation therapy. Acta Oncol. 2016;55:1392–1399.
  • Erlandsson J, Holm T, Pettersson D, et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017;18:336–346.
  • Glimelius B. What is most relevant in preoperative rectal cancer chemoradiotherapy – the chemotherapy, the radiation dose or the timing to surgery? Acta Oncol. 2016;55:1381–1385.
  • Bujko K, Pietrzak L, Partycki M, et al. The feasibility of short-course radiotherapy in a watch-and-wait policy for rectal cancer. Acta Oncol. 2017;56:1152–1154.
  • Lundby L, Jensen VJ, Overgaard J, et al. Long-term colorectal function after postoperative radiotherapy for colorectal cancer. Lancet. 1997;350:564.
  • Glimelius B, Myklebust TA, Lundqvist K, et al. Two countries – two treatment strategies for rectal cancer. Radiother Oncol. 2016;121:357–363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.