1,446
Views
12
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES: RADIOTHERAPY AND RADIOBIOLOGY

Automatic segmentation of pelvic organs-at-risk using a fusion network model based on limited training samples

, , , , , , , , & show all
Pages 933-939 | Received 19 Mar 2020, Accepted 23 May 2020, Published online: 22 Jun 2020

References

  • Duane FK, Langan B, Gillham C, et al. Impact of delineation uncertainties on dose to organs at risk in CT-guided intracavitary brachytherapy. Brachytherapy. 2014;13:210–218.
  • Sykes J. Reflections on the current status of commercial automated segmentation systems in clinical practice. J Med Radiat Sci. 2014;61:131–134.
  • Nelms BE, Tomé WA, Robinson G, et al. Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2012;82:368–378.
  • Greenham S, Dean J, Fu CK, et al. Evaluation of atlas-based auto-segmentation software in prostate cancer patients. J Med Radiat Sci. 2014;61:151–158.
  • Anders L, Stieler F, Siebenlist K, et al. A validating study of ABAS: an atlas-based auto-segmentation program for delineation of target volumes in breast and anorectal cancer. Intl J RadiatOncolBiol Phys. 2010;78:S836.
  • You HQ, Dai Y, Bai PG, et al. The application of atlas-based auto-segmentation (ABAS) software for adaptive radiation therapy in nasopharyngeal carcinoma. J Mod Oncol. 2017;20:3334–3346.
  • Xu Z, Burke RP, Lee CP, et al. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med Image Anal. 2015;24:18–27.
  • Gresswell S, Renz P, Werts D, et al. (P059) Impact of increasing atlas size on accuracy of an atlas-based auto-segmentation program (ABAS) for organs-at-risk (OARS) in head and neck (H&N) cancer patients. Int J Radiat Oncol Biol Phys. 2017;98:E31.
  • Sjöberg C, Lundmark M, Granberg C, et al. Clinical evaluation of multi-atlas-based segmentation of lymph node regions in head and neck and prostate cancer patients. RadiatOncol. 2013; 8:229.
  • Xu Z, Lee CP, Heinrich MP, et al. Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans Biomed Eng. 2016;63:1563–1572.
  • Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation MICCAI 2015, part III. In: Navab N, Hornegger J, Wells W, et al., editors. Medical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–241.
  • Shakeri M, Tsogkas S, Ferrante E, et al. Sub-cortical brain structure segmentation using F-CNNs. Proceedings of the IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016 Apr 13–16; Prague, Czech Republic. 2016. p. 269–272.
  • Men K, Chen X, Zhang Y, et al. Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol. 2017; :315.
  • Thong W, Kadoury S, Piche N, et al. Convolutional networks for kidney segmentation in contrast-enhanced CT scans. Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6:277–282.
  • Dou Q, Yu L, Chen H, et al. 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal. 2017;41:40–54.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. CVPR. 2015:770–778.
  • Huang G, Liu Z, Van der Matten L, et al. Densely connected convolutional networks. CVPR. 2016:2261–2269.
  • Gibson E, Giganti F, Hu Y, et al. Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans Med Imaging. 2018;37:1822–1834.
  • Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation. Proceedings of the IEEE International Conference on 3D Vision; 2016 Oct 25–28; Stanford, CA. 2016. p. 565–571.
  • Andrews S, Hamarneh G. Multi-region probabilistic dice similarity coefficient using the aitchison distance and bipartite graph matching. arXiv. 2015.
  • Kazemifar S, Balagopal A, Nguyen D, et al. Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning. Biomed Phys Eng Express. 2018;4.
  • Balagopal A, Kazemifar S, Nguyen D, et al. Fully automated organ segmentation in male pelvic CT images. Phys Med Biol. 2018;63:245015.
  • Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 2017;44:6377–6389.
  • Nasr-Esfahani E, Rafiei S, Jafari MH, et al. Dense pooling layers in fully convolutional network for skin lesion segmentation. Comput Med Imaging Graph. 2019;78:101658.
  • Dolz J, Ayed IB, Yuan J, et al. Isointense infant brain segmentation with a hyper-dense connected convolution. Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI); 2018 Apr 4–7; Washington, DC. 2018.
  • Casamitjana A, Catà M, Sánchez I, et al. Cascaded V-net using ROI masks for brain tumor segmentation. International MICCAI Brain Lesion Workshop. Barcelona (Spain): Springer International Publishing; 2017. p. 381–391.
  • Casamitjana A, Sanchez I, Combalia M, et al. Augmented V-Net for infant brain segmentation. Miccai Grand Challenge on 6-Month Infant Brain MRI Segmentation, MICCAI Brain Lesion Workshop. Barcelona (Spain): Springer International Publishing; 2017.
  • Casamitjana A, Sanchez I, Combalia M, et al. Augmented V-Net for white matter hyperintensities segmentation. WMH Segmentation Challenge, MICCAI Brain-Lesion Workshop. Barcelona (Spain): Springer International Publishing; 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.