23
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The influence of hypothermia on outer hair cells of the cochlea and its efferents

, , , , &
Pages 87-98 | Received 04 Dec 1999, Accepted 25 Sep 2000, Published online: 22 Jun 2016

References

  • Avan P, Bonfils P, Loth D, Elbez M, Erminy M. Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 1995; 97:3012–20.
  • Bell A. Circadian and menstrual rhythms in frequency variations of spontaneous otoacoustic emissions from human ears. Hear Res 1992; 58: 91–100.
  • Cazals Y, Horner K. No change detected on distortion products in awake or anesthesized guinea pigs. Acta Otolaryngol 1987; 103:572–7.
  • Collet L, Veuillet E, Moulin A, Morlet T, Giraud AL, Micheyl C et al. Contralateral auditory stimulation and otoacoustic emissions: a review of basic data in humans. Br J Audiol 1994;28:213–18.
  • Detsch O, Kochs E. Effects of ketamine on CNS-function. Anaesthesist 1997; 46 (Suppl. 1): S20–9.
  • van Dijk P, Wit HP, Segenhout JM. Spontaneous otoacoustic emissions in the European edible frog (Rana escalala): spectral details and temperature dependence. Hear Res 1989; 42: 273–82.
  • Guinan JJ, Peake WT. Middle ear characteristics of anaesthesized cats. J Acoust Soc Am 1967; 41:1237–61.
  • Gummer AW, Klinke R. Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus. Hear Res 1983; 12: 367–80.
  • Haggerty HS, Lusted HS, Morton SC. Statistical quantification of 24 hour and monthly variabilities of spontaneous otoacoustic emission frequency in humans. Hear Res 1993; 70: 31–50.
  • Harel N, Kakigi A, Hirakawa H, Mount RJ, Harrison RV. The effects of anesthesia on otoacoustic emissions. Hear Res 1997; 110: 25–33.
  • Hoth S, Lenarz T. Otoakustische Emissionen. Stuttgart-New York: Thieme Verlag, 1993; 47–67.
  • Inamura N, Kusakari J, Takasaka T. Effect of hypothermia on the cochlear potentials. Acta Otolaryngol 1987; (Suppl. 435): 33–9.
  • Kemp DT. Stimulated acoustic emission from within the human auditory system, J Acoust Soc Am 1978; 64:1386–91.
  • Kemp DT, Ryan S, Bray P. A guide to the effective use of otoacustic emissions. Ear Hear 1990; 11:93–105.
  • Kholves R, Freeman S, Sohmer H. Effect of temperature on the transient evoked and distortion product otoacoustic emissions in rats. Audiol Neurootol 1998; 3:349–60.
  • Kochs E, Bischoff P. Ketamine and evoked potentials. Anaesthesist 1994; 43 (Suppl. 2): S8–14.
  • Kochs E. Electrophysiological monitoring and mild hypothermia. J Neurosurg Anesth 1995; 7: 222–8.
  • Konishi T, Salt AN, Hamrick PE. Effects of hypothermia on ionic movement in the guinea pig cochlea. Hear Res 1981; 4:265–78.
  • Mancl LA. GEEPLUS SAS Macro for Regression Modeling of Correlated and Longitudinal Data (Version 1). Dept of Dental Public Health Sciences, University of Washington, Seattle, 98195 USA, Technical Report No. 9503,1995.
  • Manley GA, Gallo L, Köppl C. Spontaneous otoacoustic emissions in two gecko species, Gecko gecko and Eublepharis macularius. J Acoust Soc Am 1996; 99:1588–1603.
  • Markand ON, Warren C, Mallik GS, Williams CJ. Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol 1990;77:425–35.
  • Mellergard P, Nordstrom CR. Epidural temperature and possible intracerebral temperature gradients in man. Br J Neurosurg 1990;4:31–8.
  • Miller RG. Simultaneous Statistical Inference (second edition). New York-Heidelberg-Berlin: Springer, 1981.
  • Moody DB, Beecher MD, Stebbins WC. Behavioral methods in auditory research. In: CA Smith, JA Vernon, eds. Handbook of Auditory and Vestibular Research Methods. Illinois, USA, Thomas Springfield, 1976; 439–95.
  • Morand N, Veuillet E, Gagnieu MC, Lemoine P, Colet L. Benzodiazepines alter cochleocochlear loop in humans. Hear Res 1998; 121: 71–6.
  • Moulin A, Collet L, Duclaux R. Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 1993; 65: 193–210.
  • Mountain DC. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 1980; 210:71–2.
  • Nieschalk M, Beneking R, Stoll W. Die Pegelzunahme von Distorsionsproduktemissionen des Menschen durch kontralaterale Beschallung niedrigerlntcnsität. HNO 1997;45:378–84.
  • Ohlemiller KK, Siegel JH. The effects of moderate cooling on gross cochlear potentials in the gerbil: basal and apical differences. Hear Res 1992;63:79–89.
  • Plinkert PK, Lenarz T. Evozierte otoakustische Emissionen und ihre Beeinflussung durch kontralaterale akustische Stimulation. Laryngo Rhino Otol 1992;71:74–8.
  • Preckel MP, Ferber-Viart C, Leftheriotis G, Dubreuil C, Duclaux R, Saumet JL et al. Auloregulation of human inner ear blood flow during middle ear surgery with propofol or isoflurane anesthesia during controlled hypotension. Anesth Analg 1998; 87:1002–8.
  • Rodriguez RA, Audenaert SM, Austin EH, Edmonds HL. Auditory evoked responses in children during hypothermic cardiopulmonary bypass: report of cases. J Clin Neurophysiol 1995; 12:168–76.
  • Seifert E, Lamprecht-Dinnesen A, Asfour B, Rotering H, Bone HG, Scheld HH. The influence of body temperature on transient evoked otoacoustic emissions. Br J Audiol 1998; 32: 387–98.
  • Sohmer H, Gold S, Cahani M, Attias J. Effects of hypothermia on auditory brain-stem and somatosensory evoked responses. A model of a synaptic and axonal lesion. Electroencephalogr Clin Neurophysiol 1989; 74:50–7.
  • Stone JG, Young WL, Smith CR, Salomon RA, Wald A, Ostapkovich N et al. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology 1995; 82: 344–51.
  • Taschenberger G, Manley GA. Spontaneous otoacoustic emissions in the barn owl. Hear Res 1997; 110:61–76.
  • Ueda H, Hattori T, Sawaki M, Niwa H, Yanagita N. The effect of furosemide on evoked otoacoustic emissions in guinea pigs. Hear Res 1992;62:199–205.
  • Vale RJ. Monitoring of temperature during anesthesia. Int Anesthesiol Clin 1981; 19:61–83.
  • Veuillet E, Collet L, Duclaux R. Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J Neurophysiol 1991 ; 65:724–35.
  • Veuillet E, Gartner M, Champsaur G, Neidecker J, Collet L. Effects of hypothermia on cochlear micromechanical properties in humans. J Neurol Sci 1997; 145:69–76.
  • Williams EA, Brookes GB, Prasher DK. Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects. Acta Otolaryngol 1994; 114: 121–9.
  • Zenner HP, Zimmermann R, Gitter AH. Active movements of the cuticular plate induce sensory hair motion in mammalian outer hair cells. Hear Res 1988a; 34:233–40.
  • Zenner HP, Arnold W, Gitter AH. Outer hair cells as fast and slow cochlear amplifiers with a bidirectional transduction cycle. Acta Otolaryngol 1988b; 105:457–62.
  • Zenner HP, Ernst A. Sound preprocessing by AC and DC movements of cochlear outer hair cells. Prog Brain Res 1993; 97:21–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.