279
Views
9
CrossRef citations to date
0
Altmetric
Cardiovascular Medicine

The partnership between renalase and ejection fraction as a risk factor for increased cardiac remodeling biomarkers in chronic heart failure patients

, , , , , , , , & show all
Pages 909-919 | Received 11 Dec 2019, Accepted 13 Apr 2020, Published online: 29 Apr 2020

References

  • Ponikowski P, Voors AA, Anker SD, Authors/Task Force Members, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC,Eur J Heart Fail, 8. 2016;18:891–975.
  • Dong R, Zhang M, Hu Q, et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int J Mol Med. 2017; 41(2):599–614.
  • Januzzi JL, Pascual-Figal D, Daniels LB. ST2 testing for chronic heart failure therapy monitoring: the International ST2 Consensus Panel. Am J Cardiol. 2015;115(7):70–75.
  • Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med. 2013;2(12):946–952.
  • Tromp J, van der Pol A, Klip IT, et al. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ Heart Fail. 2014;7(3):457–462.
  • Li G, Xu J, Wang P, et al. Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation. 2008; 11117(10):1277–1282.
  • Wang L, Velazquez H, Moeckel G, et al. Renalase prevents AKI independent of amine-oxidase activity. JASN. 2014;25(6):1226–1235.
  • Yin J, Liu X, Zhao T, et al. A protective role of renalase in diabetic nephropathy. Clin Sci (Lond). 2020;134(1):75–85.
  • Chang J, Guo X, Rao V, et al. Identification of two forms of human plasma renalase, and their association with all-cause mortality. Kidney Int Rep. 2020;5(3):362–368.
  • Lang RM, Badano LP, Mor-Avi VV, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–270.
  • R Core Team. 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Stojanovic D, Mitic V, Petrovic D, et al. Association of plasma renalase and left ventricle mass index in heart failure patients stratified to the category of the ejection fraction: a pilot study. Dis Markers . 2019;2019:1–9.
  • Yin J, Lu Z, Wang F, et al. Renalase attenuates hypertension, renal injury and cardiac remodeling in rats with subtotal nephrectomy. J Cell Mol Med. 2016;20(6):1106–1117.
  • Baraka A, El Ghotny S. Cardioprotective effect of renalase in 5/6 nephrectomized rats. J Cardiovasc Pharmacol Ther. 2012;17(4):412–416.
  • Farzaneh-Far R, Desir GV, Na B, et al. A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study. PLOS One. 2010;5(10):e13496.
  • Orlowska-Baranowska E, Gadomska Vel Betka L, Gora J, et al. Functional polymorphism of the renalase gene is associated with cardiac hypertrophy in female patients with aortic stenosis. PLoS One. 2017;12(10):e0186729.
  • Strand AH, Gudmundsdottir H, Os I, et al. Arterial plasma noradrenaline predicts left ventricular mass independently of blood pressure and body build in men who develop hypertension over 20 years. J Hypertens. 2006;24(5):905–913.
  • Desir GV, Tang L, Wang P, et al. Renalase lowers ambulatory blood pressure by metabolizing circulating adrenaline. J Am Heart Assoc. 2012;1(4):e002634.
  • Ghosh SS, Krieg RJ, Sica DA, et al. Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system. Pediatr Nephrol. 2009;24(2):367–377.
  • Wu Y, Wang L, Deng D, et al. Renalase protects against renal fibrosis by inhibiting the activation of the ERK signaling pathways. Int J Mol Sci. 2017;18(5):855.
  • Wang Y, Safirstein R, Velazquez H, et al. Extracellular renalase protects cells and organs by outside-in signalling. J Cell Mol Med. 2017; 21(7):1260–1265.
  • Safdar B, Guo X, Johnson C, et al. Elevated renalase levels in patients with acute coronary microvascular dysfunction – a possible biomarker for ischemia. Int J Cardiol. 2019:15;279:155–161.
  • Lee HT, Kim JY, Kim M, et al. Renalase protects against ischemic AKI. JASN. 2013;24(3):445–455.
  • Wu Y, Xu J, Velazquez H, et al. Renalase deficinecy aggravates ischemic myocardial damage. Kidney Int. 2011;79(8):853–860.
  • Li X, Xie Z, Lin M, et al. Renalase protects the cardiomyocytes of Sprague-Dawley rats against ischemia and reperfusion injury by reducing myocardial cell necrosis and apoptosis. Kidney Blood Press Res. 2015;40(3):215–222.
  • Du M, Huang K, Huang D, et al. Renalase is a novel target gene of hypoxia-inducible factor-1 in protection against cardiac ischaemia–reperfusion injury. Cardiovas Res. 2015;105(2):182–191.
  • Wang F, Zhang G, Xing T, et al. Renalase contributes to the renal protection of delayed ischaemic preconditioning via the regulation of hypoxia-inducible factor-1alpha. J Cell Mol Med. 2015;19(6):1400–1409.
  • Hu N, Wang J, Hu P, et al. Investigation of Renalase gene rs2576178 polymorphism in patients with coronary artery disease. Biosci Rep. 2018;38(5):BSR20180839.
  • Li YH, Sheu WH, Lee WJ, et al. Synergistic effect of renalase and chronic kidney disease on endothelin-1 in patients with coronary artery disease ‒ a cross-sectional study. Sci Rep. 2018;8(1):7378.
  • Frunza O, Russo I, Saxena A, et al. Myocardial Galectin-3 expression is associated with remodeling of the pressure-overloaded heart and may delay the hypertrophic response without affecting survival, dysfunction, and cardiac fibrosis. Am J Pathol. 2016;186(5):1114–1127.
  • Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–1256.
  • Weir RA, Petrie CJ, Murphy CA, et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Fail. 2013;6(3):492–498.
  • Bayes-Genis A, de Antonio M, Vila J, et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. J Am Coll Cardiol. 2014;63(2):158–166.
  • Zhou H, Ni J, Yuan Y, et al. Soluble ST2 may possess special superiority as a risk predictor in heart failure patients. Int J Cardiol. 2015;186:146–147.
  • Wang F, Yin J, Lu Z, et al. Limb ischemic preconditioning protects against contrast-induced nephropathy via renalase. EBioMedicine. 2016; 9:356–365.
  • Aimo A, Vergaro G, Passino C, et al. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. JACC: Heart Failure. 2017;5(4):280–286.
  • Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta super family member growth-differentiation factor-15 protects the heart from ischemia/reperfusion in-jury. Circ Res. 2006;98(3):351–360.
  • Chan MM, Santhanakrishnan R, Chong JP, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–88.
  • Lei J, Xue SN, Wu W, et al. Increased level of soluble syndecan-1 in serum correlates with myocardial expression in a rat model of myocardial infarction. Mol Cell Biochem. 2012;359(1–2):177–182.
  • Gaggin HK, Motiwala S, Bhardwaj A, et al. Soluble concentrations of the interleukin receptor family member ST2 and beta blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–1213.
  • de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med. 2011;43(1):60–68.
  • Krintus M, Braga F, Kozinski M, et al. A study of biological and lifestyle factors, including within-subject variation, affecting concentrations of growth differentiation factor 15 in serum. Clin Chem Lab Med. 2019; 2657(7):1035–1043.
  • Schellings MW, Vanhoutte D, van Almen GC, et al. Syndecan-1 amplifies angiotensin II-induced cardiac fibrosis. Hypertension. 2010;55(2):249–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.