191
Views
2
CrossRef citations to date
0
Altmetric
Disease Diagnosis

Systems biomarker characteristics of circulating alkaline phosphatase activities for 48 types of human diseases

, , , , , , , , , , & show all
Pages 201-209 | Received 27 May 2021, Accepted 25 Oct 2021, Published online: 12 Nov 2021

References

  • Hu M, Lan Y, Lu A, et al. Glycan-based biomarkers for diagnosis of cancers and other diseases: past, present, and future. Prog Mol Biol Transl Sci. 2019;162:1–24.
  • Wu Y, Pan N, An Y, et al. Diagnostic and prognostic biomarkers for myocardial infarction. Front Vasc Med. 2021;7:617277.
  • Wu Y, Lu C, Pan N, et al. Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases. Sci Rep. 2021;11(1):12997.
  • Zhang L. Glycans and glycosaminoglycans as clinical biomarkers. Prog Mol Biol Transl Sci. 2019;163:xvii–xviii.
  • Zhang M, Dou H, Yang D, et al. Retrospective analysis of glycan-related biomarkers based on clinical laboratory data in two medical centers during the past 6 years. Prog Mol Biol Transl Sci. 2019;162:141–163.
  • Marth JD. A unified vision of the building blocks of life. Nat Cell Biol. 2008;10(9):1015–1016.
  • Guinovart JJ, Gomez-Foix AM, Seoane J, et al. Bridging the gap between glucose phosphorylation and glycogen synthesis in the liver. Biochem Soc Trans. 1997;25(1):157–160.
  • Laidlaw KME, Livingstone R, Al-Tobi M, et al. SNARE phosphorylation: a control mechanism for insulin-stimulated glucose transport and other regulated exocytic events. Biochem Soc Trans. 2017;45(6):1271–1277.
  • Hardman G, Perkins S, Brownridge PJ, et al. Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation. Embo J. 2019;38(21):e100847.
  • Vlastaridis P, Kyriakidou P, Chaliotis A, et al. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience. 2017;6(2):1–11.
  • Yu RK, Bieberich E. Regulation of glycosyltransferases in ganglioside biosynthesis by phosphorylation and dephosphorylation. Mol Cell Endocrinol. 2001;177(1–2):19–24.
  • Patarca R. Protein phosphorylation and dephosphorylation in physiologic and oncologic processes. Crit Rev Oncog. 1996;7(5–6):343–432.
  • Kurochkina N, Bhaskar M, Yadav SP, et al. Phosphorylation, dephosphorylation, and multiprotein assemblies regulate dynamic behavior of neuronal cytoskeleton: a mini-review. Front Mol Neurosci. 2018;11:373.
  • Brichacek AL, Brown CM. Alkaline phosphatase: a potential biomarker for stroke and implications for treatment. Metab Brain Dis. 2019;34(1):3–19.
  • Lowe D, Sanvictores T, John S. Alkaline phosphatase. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 [Updated 2021 Aug 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459201/
  • Xie H, Wei L, Tang S, et al. Prognostic value of pretreatment albumin-to-Alkaline phosphatase ratio in cancer: a meta-analysis. Biomed Res Int. 2020;2020:1–9.
  • Haarhaus M, Brandenburg V, Kalantar-Zadeh K, et al. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol. 2017;13(7):429–442.
  • Kam W, Clauser E, Kim YS, et al. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1985;82(24):8715–8719.
  • Swallow DM, Povey S, Parkar M, et al. Mapping of the gene coding for the human liver/bone/kidney isozyme of alkaline phosphatase to chromosome 1. Ann Hum Genet. 1986;50(3):229–235.
  • Henthorn PS, Raducha M, Edwards YH, et al. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci USA. 1987;84(5):1234–1238.
  • Martin D, Tucker DF, Gorman P, et al. The human placental alkaline phosphatase gene and related sequences map to chromosome 2 band q37. Ann Hum Genet. 1987;51(2):145–152.
  • Millán JL, Manes T. Seminoma-derived nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci USA. 1988;85(9):3024–3028.
  • Moss DW. Perspectives in alkaline phosphatase research. Clin Chem. 1992;38(12):2486–2492.
  • Stec B, Cheltsov A, Millan JL. Refinement of placental alkaline phosphatase complexed with nitrophenyl. Worldwide Protein Data Bank; 2011.
  • Hoylaerts MF, Manes T, Millán JL. Mammalian alkaline phosphatases are allosteric enzymes. J Biol Chem. 1997;272(36):22781–22787.
  • Epstein E, Kiechle FL, Artiss JD, et al. The clinical use of alkaline phosphatase enzymes. Clin Lab Med. 1986;6(3):491–505.
  • Siller A, Whyte M, Bone mASf, et al. Alkaline phosphatase: discovery and naming of our favorite enzyme. J Bone Miner Res. 2018;33(2):362–364.
  • Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res. 2016;202(1):225–234.
  • Rader BA. Alkaline phosphatase, an unconventional immune protein. Front Immunol. 2017;8:897.
  • Mori K, Janisch F, Parizi MK, et al. Prognostic value of alkaline phosphatase in hormone-sensitive prostate cancer: a systematic review and meta-analysis. Int J Clin Oncol. 2020;25(2):247–257.
  • Zhang Y, Zhang M, Zhang L, et al. PCR instrument-assisted acidolysis for monosaccharide composition analysis of serum glycans. PROTOCOL (Version 1); 2021. Available at Protocol Exchange. DOI:https://doi.org/10.21203/rs.3.pex-1280/v1
  • Azpiazu D, Gonzalo S, Villa-Bellosta R. Tissue Non-Specific alkaline phosphatase and vascular calcification: a potential therapeutic target. Curr Cardiol Rev. 2019;15(2):91–95.
  • Wu Y, Lu C, Pan N, et al. Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases. Sci Rep. 2021;11(1):12997.
  • Shipman KE, Holt AD, Gama R. Interpreting an isolated raised serum alkaline phosphatase level in an asymptomatic patient. BMJ. 2013;346:f976.
  • Li M, Gurram B, Lei S, et al. Recent advances in fluorescence imaging of alkaline phosphatase. Chin Chem Lett. 2021;32(4):1316–1330.
  • Wang L, Liu H, Zou X, et al. 3'-Terminal repair-powered dendritic nanoassembly of polyadenine molecular beacons for one-step quantification of alkaline phosphatase in human serum. 2021;93(30):10704–10711.
  • Ma F, Liu M, Zhang CY. Ligase amplification reaction-catalyzed assembly of a single quantum dot-based nanosensor for sensitive detection of alkaline phosphatase. Chem Commun. 2019;55(61):8963–8966.
  • Wang LJ, Wang ZY, Zhang CY. Primer dephosphorylation-initiated circular exponential amplification for ultrasensitive detection of alkaline phosphatase. Analyst. 2018;143(19):4606–4613.
  • Ma F, Liu WJ, Liang L, et al. Sensitive detection of alkaline phosphatase by dephosphorylation-initiated transcription reaction-mediated dual signal amplification. Chem Commun (Camb)). 2018;54(19):2413–2416.
  • Gao X, Ma G, Jiang C, et al. In vivo near-Infrared fluorescence and photoacoustic dual-modal imaging of endogenous alkaline phosphatase. Anal Chem. 2019;91(11):7112–7117.
  • Okada T, Zinchuk VS, Seguchi H. Lipopolysaccharide administration increases acid and alkaline phosphatase reactivity in the cardiac muscle. Microsc Res Tech. 2002;58(5):421–426.
  • Shanmugham LN, Petrarca C, Castellani ML, et al. IL-1beta induces alkaline phosphatase in human phagocytes. Arch Med Res. 2007;38(1):39–44.
  • Antonioli L, Pacher P, Vizi ES, et al. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355–367.
  • Pike AF, Kramer NI, Blaauboer BJ, et al. A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response. Biochim Biophys Acta. 2013;1832(12):2044–2056.
  • Jalkanen J, Yegutkin GG, Hollmén M, et al. Aberrant circulating levels of purinergic signaling markers are associated with several key aspects of peripheral atherosclerosis and thrombosis. Circ Res. 2015;116(7):1206–1215.
  • Qian S, Regan JN, Shelton MT, et al. The P2Y2 nucleotide receptor is an inhibitor of vascular calcification. Atherosclerosis. 2017;257:38–46.
  • Savinov AY, Salehi M, Yadav MC, et al. Transgenic overexpression of Tissue-Nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. J Am Heart Assoc. 2015;4(12):e002499.
  • Sheen CR, Kuss P, Narisawa S, et al. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res. 2015;30(5):824–836.
  • Bulum T, Kolarić B, Duvnjak M, et al. Alkaline phosphatase is independently associated with renal function in normoalbuminuric type 1 diabetic patients. Ren Fail. 2014;36(3):372–377.
  • Oh SW, Han KH, Han SY. Associations between renal hyperfiltration and serum alkaline phosphatase. PLOS One. 2015;10(4):e0122921-e0122921.
  • Pfleiderer G, Baier M, Mondorf AW, et al. Change in alkaline phosphatase isoenzyme pattern in urine as possible marker for renal disease. Kidney Int. 1980;17(2):242–249.
  • Canales BK, Reyes L, Reinhard MK, et al. Renal glomerular and tubular injury after gastric bypass in obese rats. Nutrition. 2012;28(1):76–80.
  • Tobar A, Ori Y, Benchetrit S, et al. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PLOS One. 2013;8(9):e75547.
  • Rao S, Snaith A, Marino D, et al. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br J Cancer. 2017;116(2):227–236.
  • Lumachi F, Marino F, Fanti G, et al. Serum N-telopeptide of type I collagen and bone alkaline phosphatase and their relationship in patients with non-small cell lung carcinoma and bone metastases. Prelim Results. 2011;31(11):3879–3881.
  • Zhou X, Zhu W, Nowicki M, et al. 3D bioprinting a Cell-Laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interfaces. 2016;8(44):30017–30026.
  • McKay R, Bossé D, Gray K, et al. Radium-223 dichloride in combination with vascular endothelial growth factor-targeting therapy in advanced renal cell carcinoma with bone metastases. Clin Cancer Res. 2018;24(17):4081–4088.
  • Karhade A, Thio Q, Kuverji M, et al. Prognostic value of serum alkaline phosphatase in spinal metastatic disease. Br J Cancer. 2019;120(6):640–646.
  • Park H, Chun Y, Kim H, et al. Clinical features and KRAS mutation in colorectal cancer with bone metastasis. Sci Rep. 2020;10(1):21180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.