0
Views
0
CrossRef citations to date
0
Altmetric
Diabetes

Recent progress in artificial intelligence and machine learning for novel diabetes mellitus medications development

, , , & ORCID Icon
Received 04 Feb 2024, Accepted 29 Jul 2024, Accepted author version posted online: 31 Jul 2024
Accepted author version

Reference

  • Anklam E, Bahl MI, Ball R, Beger RD, Cohen J, Fitzpatrick S, et al. Emerging technologies and their impact on regulatory science. Experimental Biology and Medicine. 2022;247(1):1-75. doi: 10.1177/15353702211052280.
  • Heikkinen I, Eskola S, Acha V, Morrison A, Walker C, Weil C, et al. Role of innovation in pharmaceutical regulation: A proposal for principles to evaluate EU General Pharmaceutical Legislation from the innovator perspective. Drug Discovery Today. 2023;28(5):103526. doi: 10.1016/j.drudis.2023.103526.
  • Jensen ET, Rigdon J, Rezaei KA, Saaddine J, Lundeen EA, Dabelea D, et al. Prevalence, progression, and modifiable risk factors for diabetic retinopathy in youth and young adults with youth-onset type 1 and type 2 diabetes: the SEARCH for diabetes in youth study. Diabetes Care. 2023;46(6):1252-60. doi: 10.2337/dc22-2503.
  • Tiwari S, Kaur P, Gupta D, Chaudhury S, Chaudhary M, Mittal A, et al. An Insight into the Development of Potential Antidiabetic Agents along with their Therapeutic Targets. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2024;24(1):50-85. doi: 10.2174/1871530323666230522112758.
  • Wolosowicz M, Prokopiuk S, Kaminski TW. Recent advances in the treatment of insulin resistance targeting molecular and metabolic pathways: fighting a losing battle? Medicina. 2022;58(4):472. doi: 10.3390/medicina58040472.
  • Bano I, Butt UD, Mohsan SAH. New challenges in drug discovery. Novel Platforms for Drug Delivery Applications: Elsevier. 2023;619-43. doi: 10.1016/B978-0-323-91376-8.00021-5.
  • Gayathiri E, Prakash P, Kumaravel P, Jayaprakash J, Ragunathan MG, Sankar S, et al. Computational approaches for modeling and structural design of biological systems: A comprehensive review. Progress in Biophysics and Molecular Biology. 2023. doi: 10.1016/j.pbiomolbio.2023.08.002.
  • Torfi A, Shirvani RA, Keneshloo Y, Tavaf N, Fox EA. Natural language processing advancements by deep learning: A survey. arXiv preprint arXiv:200301200. 2020. doi: 10.48550/arXiv.2003.01200.
  • Aliper A, Kudrin R, Polykovskiy D, Kamya P, Tutubalina E, Chen S, et al. Prediction of Clinical Trials Outcomes Based on Target Choice and Clinical Trial Design with Multi‐Modal Artificial Intelligence. Clinical Pharmacology & Therapeutics. 2023;114(5):972-80. doi: 10.1002/cpt.3008.
  • Gruber A, Führer F, Menz S, Diedam H, Göller AH, Schneckener S. Prediction of human pharmacokinetics from chemical structure: combining mechanistic modeling with machine learning. Journal of Pharmaceutical Sciences. 2023. doi: 10.1016/j.xphs.2023.10.035.
  • Wu W-T, Li Y-J, Feng A-Z, Li L, Huang T, Xu A-D, et al. Data mining in clinical big data: the frequently used databases, steps, and methodological models. Military Medical Research. 2021;8:1-12. doi: 10.1186/s40779-021-00338-z.
  • Yang S, Kar S. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artificial Intelligence Chemistry. 2023;100011. doi: 10.1016/j.aichem.2023.100011.
  • Hossain MA, Pervin R. Current antidiabetic drugs: review of their efficacy and safety. Nutritional and therapeutic interventions for diabetes and metabolic syndrome. 2018;455-73. doi: 10.1016/B978-0-12-812019-4.00034-9.
  • Perez-Riverol Y, Vera R, Mazola Y, Musacchio A. A parallel systematic-Monte Carlo algorithm for exploring conformational space. Current topics in medicinal chemistry. 2012;12(16):1790-96. doi: 10.2174/156802612803989237..
  • Hawkins PC. Conformation generation: the state of the art. Journal of chemical information and modeling. 2017;57(8):1747-56. doi: 10.1021/acs.jcim.7b00221.
  • Newman DJ, Phil D. Natural products and drug discovery. National Science Review. 2022:nwac206. doi: 10.1093/nsr/nwac206.
  • Shah M, Bashir S, Jaan S, Nawaz H, Nishan U, Abbasi SW, et al. Computational analysis of plant-derived terpenes as α-glucosidase inhibitors for the discovery of therapeutic agents against type 2 diabetes mellitus. South African Journal of Botany. 2021;143:462-73. doi: 10.1016/j.sajb.2021.09.030.
  • Rashid F, Ahmad M, Ashfaq UA, Al-Mutairi AA, Al-Hussain SA. Design, Synthesis and Pharmacological Evaluation of 2-(3-BenzoyI-4-Hydroxy-1, 1-Dioxido-2H-Benzo [e][1, 2] thiazin-2-yI)-N-(2-Bromophenyl) Acetamide as Antidiabetic Agent. Drug Design, Development and Therapy. 2022;4043-60. doi: 10.2147/DDDT.S379205.
  • Ghasemlou A, Uskoković V, Sefidbakht Y. Exploration of potential inhibitors for SARS‐CoV‐2 Mpro considering its mutants via structure‐based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnology and Applied Biochemistry. 2023;70(1):439-57. doi: 10.1002/bab.2369.
  • Shirazi J, Jafari S, Ryde U, Irani M. Catalytic Reaction Mechanism of Glyoxalase II: A Quantum Mechanics/Molecular Mechanics Study. The Journal of Physical Chemistry B. 2023. doi: 10.1021/acs.jpcb.3c01495.
  • Kiss M, Timári I, Barna T, Mészáros Z, Slámová K, Bojarová P, et al. 2-Acetamido-2-deoxy-d-glucono-1, 5-lactone Sulfonylhydrazones: Synthesis and Evaluation as Inhibitors of Human OGA and HexB Enzymes. International Journal of Molecular Sciences. 2022;23(3):1037. doi: 10.3390/ijms23031037.
  • Kulkarni PU, Shah H, Vyas VK. Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Simulation: A Tool for Structure-Based Drug Design and Discovery. Mini Reviews in Medicinal Chemistry. 2022;22(8):1096-107. doi: 10.2174/1389557521666211007115250.
  • Bai Q, Liu S, Tian Y, Xu T, Banegas‐Luna AJ, Pérez‐Sánchez H, et al. Application advances of deep learning methods for de novo drug design and molecular dynamics simulation. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022;12(3):e1581. doi: 10.1002/wcms.1581.
  • Choudhury C, Murugan NA, Priyakumar UD. Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods. Drug Discovery Today. 2022;27(7):1847-61. doi: 10.1016/j.drudis.2022.03.006.
  • Batool M, Ahmad B, Choi S. A structure-based drug discovery paradigm. International journal of molecular sciences. 2019;20(11):2783. doi: 10.3390/ijms20112783.
  • Qi J-h, Chen P-y, Cai D-y, Wang Y, Wei Y-l, He S-p, et al. Exploring novel targets of sitagliptin for type 2 diabetes mellitus: Network pharmacology, molecular docking, molecular dynamics simulation, and SPR approaches. Frontiers in Endocrinology. 2023;13:1096655. doi: 10.3389/fendo.2022.1096655.
  • Bhimanwar RS, Lokhande KB, Shrivastava A, Singh A, Chitlange SS, Mittal A. Identification of potential drug candidates as TGR5 agonist to combat type II diabetes using in silico docking and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics. 2023;1-18. doi: 10.1080/07391102.2023.2173654.
  • Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Quantum chemical descriptors in quantitative structure–activity relationship models and their applications. Chemometrics and Intelligent Laboratory Systems. 2021;217:104384. doi: 10.1016/j.chemolab.2021.104384.
  • Ragno R. www. 3d-qsar. com: a web portal that brings 3-D QSAR to all electronic devices—the Py-CoMFA web application as tool to build models from pre-aligned datasets. Journal of computer-aided molecular design. 2019;33:855-64. doi: 10.1007/s10822-019-00231-x.
  • Cabezas D, Mellado G, Espinoza N, Gárate JA, Morales C, Castro-Alvarez A, et al. In silico approaches to develop new phenyl-pyrimidines as glycogen synthase kinase 3 (GSK-3) inhibitors with halogen-bonding capabilities: 3D-QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics. 2023;1-10. doi: 10.1080/07391102.2023.2172457.
  • Liu Y, Wang R, Ren C, Pan Y, Li J, Zhao X, et al. Two myricetin-derived flavonols from Morella rubra leaves as potent α-glucosidase inhibitors and structure-activity relationship study by computational chemistry. Oxidative Medicine and Cellular Longevity. 2022;2022. doi: 10.1155/2022/9012943.
  • Choudhury C, Narahari Sastry G. Pharmacophore modelling and screening: concepts, recent developments and applications in rational drug design. Structural bioinformatics: applications in preclinical drug discovery process. 2019;25-53. doi: 10.1007/978-3-030-05282-9_2.
  • Singh R, Rao HK, Singh TG. Comparison of safety and efficacy of pregabalin, duloxetine and their combination with epalrestat in diabetic neuropathy: a prospective, double-blind, randomized, controlled Trial. Journal of Applied Pharmaceutical Science. 2021;11(1):071-79. doi: 10.7324/JAPS.2021.11s108.
  • Saeed M, Tasleem M, Shoib A, Kausar MA, Sulieman AME, Alabdallah NM, et al. Identification of putative plant-based ALR-2 inhibitors to treat diabetic peripheral neuropathy. Current Issues in Molecular Biology. 2022;44(7):2825-41. doi: 10.3390/cimb44070194.
  • Nayarisseri A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, et al. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Current drug targets. 2021;22(6):631-55. doi: 10.2174/1389450122999210104205732.
  • Watson SI, Pan Y. Evaluation of combinatorial optimisation algorithms for c-optimal experimental designs with correlated observations. Statistics and Computing. 2023;33(5):112. doi: 10.1007/s11222-023-10280-w.
  • Zhang Y, Jin Z. Comprehensive learning Jaya algorithm for engineering design optimization problems. Journal of Intelligent Manufacturing. 2022;1-25. doi: 10.1007/s10845-020-01723-6.
  • Greenhill S, Rana S, Gupta S, Vellanki P, Venkatesh S. Bayesian optimization for adaptive experimental design: A review. IEEE access. 2020;8:13937-48. doi: 10.1109/ACCESS.2020.2966228.
  • Shi Y, Prieto PL, Zepel T, Grunert S, Hein JE. Automated experimentation powers data science in chemistry. Accounts of Chemical Research. 2021;54(3):546-55. doi: 10.1021/acs.accounts.0c00736.
  • Churcher A, Ullah R, Ahmad J, Masood F, Gogate M, Alqahtani F, et al. An experimental analysis of attack classification using machine learning in IoT networks. Sensors. 2021;21(2):446. doi: 10.3390/s21020446.
  • Lee CY, Chen Y-PP. Prediction of drug adverse events using deep learning in pharmaceutical discovery. Briefings in Bioinformatics. 2021;22(2):1884-901. doi: 10.1093/bib/bbaa040.
  • Lee SJ, Bae SH, Jeon S, Ji HY, Han S. Combined translational pharmacometrics approach to support the design and conduct of the first‐in‐human study of DWP16001. British Journal of Clinical Pharmacology. 2023. doi: 10.1111/bcp.15891.
  • Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A, Scheiner S, et al. Mechanistic modeling and multiscale applications for precision medicine: theory and practice. Network and systems medicine. 2020;3(1):36-56. doi: 10.1089/nsm.2020.0002.
  • Yoon S, Guk J, Lee S-G, Chae D, Kim J-H, Park K. Model-informed precision dosing in vancomycin treatment. Frontiers in Pharmacology. 2023;14:1252757. doi: 10.3389/fphar.2023.1252757.
  • Simonsson C, Lövfors W, Bergqvist N, Nyman E, Gennemark P, Stenkula KG, et al. A multi-scale in silico mouse model for diet-induced insulin resistance. Biochemical Engineering Journal. 2023;191:108798. doi: 10.1016/j.bej.2022.108798.
  • Ilyas IF, Chu X. Outlier detection. Data cleaning: Morgan & Claypool. 2019. doi: 10.1145/3310205.3310208.
  • Belcher BT, Bower EH, Burford B, Celis MR, Fahimipour AK, Guevara IL, et al. Demystifying image-based machine learning: a practical guide to automated analysis of field imagery using modern machine learning tools. Frontiers in Marine Science. 2023;10:1157370. doi: 10.3389/fmars.2023.1157370.
  • Börner K, Bueckle A, Ginda M. Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences. 2019;116(6):1857-64. doi: 10.1073/pnas.1807180116.
  • Draxl C, Scheffler M. The NOMAD laboratory: from data sharing to artificial intelligence. Journal of Physics: Materials. 2019;2(3):036001. doi: 10.1088/2515-7639/ab13bb.
  • Bharadiya JP. A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data Analytics. American Journal of Artificial Intelligence. 2023;7(1):24. doi: 10.11648/j.ajai.20230701.14.
  • Shu X, Ye Y. Knowledge Discovery: Methods from data mining and machine learning. Social Science Research. 2023;110:102817. doi: 10.1016/j.ssresearch.2022.102817.
  • Olubamwo OO. Fatty liver index and risk of incident cardiometabolic disease and mortality: Itä-Suomen yliopisto. 2023. doi: 10.1136/bmjopen-2018-026949.
  • Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Scientific reports. 2019;9(1):11862. doi: 10.1038/s41598-019-48263-5.
  • Li I, Pan J, Goldwasser J, Verma N, Wong WP, Nuzumlalı MY, et al. Neural natural language processing for unstructured data in electronic health records: A review. Computer Science Review. 2022;46:100511. doi: 10.1016/j.cosrev.2022.100511.
  • Liu J, Wang C, Liu S. Utility of ChatGPT in clinical practice. Journal of Medical Internet Research. 2023;25:e48568. doi: 10.2196/48568.
  • Lee S, Doktorchik C, Martin EA, D'Souza AG, Eastwood C, Shaheen AA, et al. Electronic medical record–based case phenotyping for the charlson conditions: Scoping review. JMIR medical informatics. 2021;9(2):e23934. doi: 10.2196/23934.
  • Borna S, Maniaci MJ, Haider CR, Maita KC, Torres-Guzman RA, Avila FR, et al. Artificial Intelligence Models in Health Information Exchange: A Systematic Review of Clinical Implications. Healthcare; 2023; 2023. p. 2584. doi: 10.3390/healthcare11182584.
  • Zheng L, Wang Y, Hao S, Shin AY, Jin B, Ngo AD, et al. Web-based real-time case finding for the population health management of patients with Diabetes Mellitus: A prospective validation of the natural language processing–based algorithm with statewide electronic medical records. JMIR medical informatics. 2016;4(4):e6328. doi: 10.2196/medinform.6328.
  • Mollaei N, Cepeda C, Rodrigues J, Gamboa H. Biomedical Text Mining: Applicability of Machine Learning-based Natural Language Processing in Medical Database. Biosignals. 2022; 2022. p. 159-66. doi: 10.5220/0010819500003123.
  • Mora S, Turrisi R, Chiarella L, Tassi L, Mai R, Nobili L, et al. NLP-based tools for localization of the Epileptogenic Zone in patients with drug-resistant focal epilepsy. bioRxiv. 2022;2022.11. 18.516120. doi: 10.1038/s41598-024-51846-6.
  • Jussupow E, Spohrer K, Heinzl A, Gawlitza J. Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence. Information Systems Research. 2021;32(3):713-35. doi: 10.1287/isre.2020.0980.
  • Pei X, Yao X, Yang Y, Zhang H, Xia M, Huang R, et al. Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients. Diabetes Research and Clinical Practice. 2022;184:109190. doi: 10.1016/j.diabres.2022.109190.
  • Huang X, Wang H, She C, Feng J, Liu X, Hu X, et al. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology. 2022;13:946915. doi: 10.3389/fendo.2022.946915.
  • Avvisato R, Forzano I, Varzideh F, Mone P, Santulli G. A machine learning model identifies a functional connectome signature that predicts blood pressure levels: imaging insights from a large population of 35 882 patients. Oxford University Press US. 2023;1458-60. doi: 10.1093/cvr/cvac116.
  • Chaki J, Ganesh ST, Cidham S, Theertan SA. Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. Journal of King Saud University-Computer and Information Sciences. 2022;34(6):3204-25. doi: 10.1016/j.jksuci.2020.06.013.
  • Yu G, Chen Z, Wu J, Tan Y. Medical decision support system for cancer treatment in precision medicine in developing countries. Expert Systems with Applications. 2021;186:115725. doi: 10.1016/j.eswa.2021.115725.
  • Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC medical informatics and decision making. 2021;21:1-23. doi: 10.1186/s12911-021-01488-9.
  • King TC, Aggarwal N, Taddeo M, Floridi L. Artificial intelligence crime: An interdisciplinary analysis of foreseeable threats and solutions. Science and engineering ethics. 2020;26:89-120. doi: 10.1007/s11948-018-00081-0.
  • Liu Y, Wang J, Tang S, Zhang J, Wan J. Integrating information entropy and latent Dirichlet allocation models for analysis of safety accidents in the construction industry. Buildings. 2023;13(7):1831. doi: 10.3390/buildings13071831.
  • Chakraborty A, Venkatraman JV. Pharmacovigilance Through Phased Clinical Trials, Post-Marketing Surveillance and Ongoing Life Cycle Safety. The Quintessence of Basic and Clinical Research and Scientific Publishing: Springer. 2023;427-42. doi: 10.1007/978-981-99-1284-1_27.
  • Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Molecular diversity. 2021:1-21. doi: 10.1007/s11030-021-10326-z.
  • Ghobakhloo M, Asadi S, Iranmanesh M, Foroughi B, Mubarak MF, Yadegaridehkordi E. Intelligent automation implementation and corporate sustainability performance: The enabling role of corporate social responsibility strategy. Technology in Society. 2023;102301. doi: 10.1016/j.techsoc.2023.102301.
  • Steimers A, Schneider M. Sources of risk of AI systems. International Journal of Environmental Research and Public Health. 2022;19(6):3641. doi: 10.1016/j.wem.2014.12.007.
  • Aliman N-M, Kester L, Yampolskiy R. Transdisciplinary AI observatory—retrospective analyses and future-oriented contradistinctions. Philosophies 2021;6(1):6. doi: 10.3390/philosophies6010006.
  • Oikonomou EK, Khera R. Machine learning in precision diabetes care and cardiovascular risk prediction. Cardiovascular Diabetology. 2023;22(1):259. doi: 10.1186/s12933-023-01985-3.
  • Gautier T, Ziegler LB, Gerber MS, Campos-Náñez E, Patek SD. Artificial intelligence and diabetes technology: A review. Metabolism. 2021;124:154872. doi: 10.1016/j.metabol.2021.154872.
  • Gou W, Ling C-w, He Y, Jiang Z, Fu Y, Xu F, et al. Interpretable machine learning framework reveals robust gut microbiome features associated with type 2 diabetes. Diabetes Care. 2021;44(2):358-66. doi: 10.2337/dc20-1536.
  • Hunt PA. QSAR using 2D descriptors and TRIPOS'SIMCA. Journal of computer-aided molecular design. 1999;13:453-67. doi: 10.1023/A:1008091001082.
  • Shi W, Guo J, Bao T. QSAR tools for toxicity prediction in risk assessment—Comparative analysis. QSAR in Safety Evaluation and Risk Assessment: Elsevier. 2024;203-18. doi: 10.1016/B978-0-443-15339-6.00016-3.
  • Al-Shar’i NA. The design of TOPK inhibitors using similarity search, molecular docking, and MD simulations. Journal of Biomolecular Structure and Dynamics. 2024;1-12. doi: 10.1080/07391102.2024.2319107.
  • Ridings J, Barratt M, Cary R, Earnshaw C, Eggington C, Ellis M, et al. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology. 1996;106(1-3):267-79. doi: 10.1016/0300-483X(95)03190-Q.
  • Klopman G, Sedykh A. An MCASE approach to the search of a cure for Parkinson's Disease. BmC pharmacology. 2002;2:1-11. doi: 10.1186/1471-2210-2-8.
  • Patel P, Navneesh N, Kurmi B, Rangra NK, Gupta GD, Rawat R, et al. 1, 3, 5-Triazine Based Hydroxamic Acid Analogues as HDAC Inhibitors: Integrated Modelling by 3D QSAR, Hypogen Pharmacophore Based Virtual Screening and Molecular Dynamic Simulation Studies. 2023. doi: 10.21203/rs.3.rs-2892636/v1.
  • Banerjee S, Baidya SK, Adhikari N, Jha T. 3D-QSAR Studies: CoMFA, CoMSIA, and Topomer CoMFA Methods. Modeling Inhibitors of Matrix Metalloproteinases: CRC Press. 2023;32-53. doi: 10.1201/9781003303282.
  • Tran TTN, Tran TDT, Bui TTT. Integration of machine learning in 3D-QSAR CoMSIA models for the identification of lipid antioxidant peptides. RSC advances. 2023;13(48):33707-20. doi: 10.1039/D3RA06690H.
  • Storchi L, Cruciani G, Cross S. DeepGRID: Deep Learning Using GRID Descriptors for BBB Prediction. Journal of Chemical Information and Modeling. 2023;63(17):5496-512. doi: 10.1021/acs.jcim.3c00768.
  • Anton RF, O’Malley SS, Ciraulo DA, Cisler RA, Couper D, Donovan DM, et al. Combined pharmacotherapies and behavioral interventions for alcohol dependence: the COMBINE study: a randomized controlled trial. Jama. 2006;295(17):2003-17. doi: 10.1001/jama.295.17.2003.
  • Vijayalakshmi M, Suresh AJ, Vadivelan S, Kaviarasan L, Srinivasan R, Magesh M. Synthesis and pharmacological evaluation of selective MAO-A inhibitors using structure and pharmacophore-based drug design. Journal of Molecular Structure. 2024;1301:137302. doi: 10.1016/j.molstruc.2023.137302.
  • Whitehead TM, Strickland J, Conduit GJ, Borrel A, Mucs D, Baskerville-Abraham I. Quantifying the Benefits of Imputation over QSAR Methods in Toxicology Data Modeling. Journal of Chemical Information and Modeling. 2023. doi: 10.1021/acs.jcim.3c01695.
  • P Mazanetz M, J Marmon R, BT Reisser C, Morao I. Drug discovery applications for KNIME: an open source data mining platform. Current topics in medicinal chemistry. 2012;12(18):1965-79. doi: 10.2174/156802612804910331.
  • Seo S, Lee JW. Applications of Big Data and AI-Driven Technologies in CADD (Computer-Aided Drug Design). Computational Drug Discovery and Design: Springer. 2023;295-305. doi: 10.1007/978-1-0716-3441-7_16.
  • Cephe A, Koçhan N, Aksel EG, İpekten F, Yerlitaş Sİ, Zararsız GE, et al. Bioinformatics and biostatistics in precision medicine. Oncology: Genomics, Precision Medicine and Therapeutic Targets: Springer. 2023;189-235. doi: 10.1007/978-981-99-1529-3_8.
  • Pandey D, Nandave M, Kumar A. Pharmacovigilance System in the USA. Pharmacovigilance Essentials: Advances, Challenges and Global Perspectives: Springer. 2024;183-97. doi: 10.1007/978-981-99-8949-2_9.
  • Li M, You R, Su Y, Zhou H, Gong S. Characteristic analysis of adverse reactions of five anti-TNFɑ agents: a descriptive analysis from WHO-VigiAccess. Frontiers in Pharmacology. 2023;14:1169327. doi: 10.3389/fphar.2023.1169327.
  • Rayón-Ramírez G, Alvarado-López S, Camacho-Sandoval R, Loera MJ, Svarch AE, Alcocer-Varela J. Strengthening the Pharmacovigilance System in Mexico: Implementation of VigiFlow and VigiLyze, as ICSR and Signal Detection Management Systems. Pharmaceutical Medicine. 2023;37(6):425-37. doi: 10.1007/s40290-023-00490-y.
  • Abbas H, Zeitoun A, Watfa M, Karam R. Implementation of a Pharmacovigilance System in a Resources-Limited Country in the Context of COVID-19: Lebanon’s Success Story. Therapeutic Innovation & Regulatory Science. 2023;57(2):178-85. doi: 10.1007/s43441-022-00460-7.
  • Choo SM, Sartori D, Lee SC, Yang H-C, Syed-Abdul S. Data-Driven Identification of Factors That Influence the Quality of Adverse Event Reports: 15-Year Interpretable Machine Learning and Time-Series Analyses of VigiBase and QUEST. JMIR Medical Informatics. 2024;12(1):e49643. doi: 10.2196/49643.
  • Murali K, Kaur S, Prakash A, Medhi B. Artificial intelligence in pharmacovigilance: practical utility. Medknow. 2019;373-76. doi: 10.4103/ijp.IJP_814_19.
  • Pétervári M, Benczik B, Balogh OM, Petrovich B, Ágg B, Ferdinandy P. Network analysis for signal detection in spontaneous adverse event reporting database: application of network weighting Normalization to characterize cardiovascular drug safety. Drug Safety. 2022;45(11):1423-38. doi: 10.1007/s40264-022-01225-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.