226
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Viscoelastic Properties of Self-Assembled Type I Collagen Fibers: Molecular Basis of Elastic and Viscous Behaviors

, &
Pages 569-580 | Published online: 06 Aug 2009

References

  • Silver, F.H., Christiansen, D., Snowhill, P.B., Chen. Y., and Landis, W.J. (2000). The role of mineral in the storage of elastic energy in turkey tendons. Biomacromol. 1:180–185.
  • Silver, F.H., Bradica, G., and Tria, A.J. (2000a). Viscoelastic behavior of osteoarthritic cartilage. Conn. Tissue Res. 42:223–233.
  • Silver, F.H., Horvath, I., and Foran, D. (2000b). Viscoelasticity of the vessel wall: Role of collagen and elastic fibers. Critical Reviews in Biomedical Engineering 29:279–302.
  • Silver, F.H., Freeman, J., and DeVore, D. (2001). Viscoelastic behavior of human skin and processed dermis. Skin Research and Technology 7:18–23.
  • Silver, F.H. (1987). Biological materials: Structure, mechanical properties and modeling of soft tissues, pp. 91–195, New York: New York University Press.
  • Alexander, R.M. (1983). Animal mechanics (2nd ed.), Oxford, UK: Blackwell Scientific.
  • Alexander, R.M. (1984). Elastic energy stores in running vertebrates. A. Zool. 24:85–94.
  • Torp, S., Baer, E., and Friedman, B. (1975). Effects of age and of mechanical deformation on the ultrastructure of tendon. Colston Papers 26:223–250.
  • McBride, D.J., Trelstad, R.L., and Silver, F.H. (1988). Structural and mechanical assessment of developing chick tendon. Int. J. Biol. Macromol. 10:194–200.
  • Elliott, D.H. (1965). Structure and function of mammalian tendon. Biol. Rev. 40:392–421.
  • Greenlee, T.K., and Ross, R. (1967). The development of the rat flexor digital tendon: A fine structure study. J. Ultrastruct. Res. 18:353–376.
  • Rowe, R.W.D. (1985). The structure of rat tail tendon. Conn. Tissue Res. 14:9–20.
  • Rowe, R.W.D. (1985). The structure of rat tail tendon fascicles. Conn. Tissue Res. 14:21–30.
  • Scott, J.E. (1984). The periphery of the developing collagen fibril. Biochem. J. 187:259–269.
  • Scott, J.E. (1996). Proteodermatan and proteokeratan sulfate (decorin, lumincan/fibromodulin) proteins are horseshoe shaped: Implications for their interactions with collagen. Biochemistry 35:8795–8797.
  • Cribb, A.M., and Scott, J.E. (1995). Tendon response to tensile stress: An ultrastuctural investigation of collagen: Proteoglycan interactions in stressed tendon. J. Anat. 187:423–428.
  • Pins, G.D., Christiansen, D.L., Patel, R., and Silver, F.H. (1997). Self-assembly of collagen fibers: Influence of fibrillar alignment and decorin on mechanical properties. Biophysical J. 73:2164–2172.
  • Silver, F.H., Kato, Y.P., Ohno, M., and Wasserman, A.J. (1992). Analysis of mammalian connective tissue: Relationship between hierarchical structures and mechanical properties. J. Long-Term Effects of Medical Implants 2:165–198.
  • Rigby, B.J., Hirai, N., Spikes, J.D., and Eyring, H. (1959). The mechanical properties of rat tail tendon. J. Gen. Physiol. 43:265–283.
  • Diamant, J., Keller, A., Baer, E., Lith, N., and Arridge, R.G.C. (1972). Collagen: Ultrastructure and its relationship to mechanical properties as a function of aging. Proc. R. Soc. London Ser. B 180:293–315.
  • Mosler, E., Folkhard, W., Knorzer, E., Nemetschek-Gansler, H., Nemetschek, Th., and Koch, M.H. (1985). Stress-induced molecular arrangement in tendon collagen. J. Mol. Biol. 182:589–596.
  • Kato, Y.P., Christiansen, D.L., Hahn, R.A., Shieh, S.J., Goldstein, J.D., and Silver, F.H. (1989). Mechanical properties of collagen fibers: A comparison of reconstituted and rat tail tendon fibers. Biomaterials 10:38–42.
  • Silver, F.H., Christiansen, D.L., Snowhill, P.B., and Chen, Y. (2001). Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers. Journal Applied Polymer Science 79:134–142.
  • Christiansen, D.L., Huang, E.K., and Silver, F.H. (2000). Assembly of type I collagen: Fusions of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biology 19:409–420.
  • Silver, F.H., Christiansen, D.L., Snowhill, P., and Chen, Y. (2000). Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fiber. Connective Tissue Research 41:155–164.
  • Silver, F.H., Freeman, J., Horvath, I., and Landis, W.J. (2001a). Molecular basis for elastic energy storage in mineralized tendon. Biomacromolecules 2:750–756.
  • Silver, F.H., Seehra, G.P., Freeman, J.W., and DeVore, D. (2002). Viscoelastic properties of young and old human dermis: Evidence that elastic energy storage occurs in the flexible regions of collagen and elastin. J. Applied Polymer Science 86:1978–1985.
  • Silver, F.H. (1982). A molecular model for linear and lateral growth of type I collagen fibrils. Collagen and Related Research 2:219–229.
  • Schwartz, A., Geil, P. H., and Walton, A. G. (1969). Ultrastructural deformation of reconstituted collagen. Biochim. Biophys. Acta 194:130–137.
  • North, A.C., Cowan, P.M., and Randall, J.T. (1954). Structural units in collagen fibrils. Nature 174:1142–1143.
  • Fraser, R.D.B., MacRae, T.P., Miller, A., and Suzuki, E. (1983). Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 167:497–521.
  • Wess, T.J., Hammersley, A.P., Wess, L., and Miller, A.J. (1995). Type I collagen packing conformation in the triclinic unit cell. J. Mol. Biol. 248:487–493.
  • Wess, T.J., Hammersley, A.P., Wess, L., and Miller, A. (1998). A concensus model for molecular packing of type I collagen. J. Structural Biology 122:92–100.
  • Fraser, R.D.B., MacRae, T.P., and Miller, A. (1987). Molecular packing in type I collagen fibrils. J. Mol. Biol. 193:115–125.
  • Paterlini, M.G., Nemethy, G., and Scheraga, H.A. (1995) The energy of formation of internal loops in triple-helical collagen polypeptides. Biopolymers 35:607–614.
  • Fraser, R.D.B., and Trus, B.L. (1986). Molecular mobility in the gap region of type I collagen fibrils. Bioscience Reports 6:221–226.
  • Venugopal, M.G., Ramshaw, J.A.M., Braswell, E., Zhu, D., and Brodsky, B. (1994). Electrostatic interactions in collagen-like triple-helical peptides. Biochemistry 33:7948–7956.
  • Chapman, G.E., Danyluk, S.S., and McLauchlan, K.A. (1971). A model for collagen hydration. Proc. R. Soc. Lond. 178B: 465–476.
  • Andronikashvili, E.L., Mrevlishvili, G.M., Japaridze, G.SH., Sokhadze, V.M., and Kvavadze, K.A. (1976). Thermal properties of collagen in helical and random coiled states in the temperature range from 4◦ to 300◦K. Biopolymers 15:1991–2004.
  • Sasaki, N., Shiwa, S., Yagihara, S., and Hickichi, K. (1983). X-ray diffraction studies on the structure of hydrated collagen. Biopolymers 22:2539–2547.
  • Leikin, S., Rau, D.C., and Parsegian, V.A. (1994). Direct measurement of forces between self-assembled proteins: Temperature-dependent exponential forces between collagen triple helices. Proc. Natl. Acad. Sci. USA 91:276–280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.