38
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Vascular-Mineral Spatial Correlation in the Calcifying Turkey Leg Tendon

, &
Pages 595-605 | Published online: 06 Aug 2009

References

  • Johnson, L.C. (1960). Mineralization of turkey leg tendon: I. Histology and histochemistry of mineralization. In: Calcification in Biological Systems, R. F. Sognnaes (ed.), pp. 117–128. (American Association for the Advancement of Science, Washington, DC).
  • Nylen, M.U., Scott, D.B., and Mosley, V.M. (1960). Mineralization of turkey leg tendon: II. Collagen-mineral relations revealed by electron and x-ray microscopy. In: Calcification in Biological Systems, R. F. Sognnaes (ed.), pp. 129–142. (American Association for the Advancement of Science, Washington, DC).
  • Berthet-Colominas, C., Miller, A., and White, S.W. (1979). Structural study of the calcifying collagen in turkey leg tendon. J. Mol. Biol. 134: 431–445.
  • Traub, W., Arad, T., and Weiner, S. (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc. Natl. Acad. Sci. USA 86:9822–9826.
  • Landis, W.J. (1986). A study of the calcification in the leg tendons from the domestic turkey. J. Ultrastruct. Mol. Struct. Res. 94:217–238.
  • Landis, W.J., Song, M.J., Leith, A., McEwen, L., and McEwen, B. (1993). Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J. Struct. Biol. 110:39–54.
  • Landis, W.J., Hodgens, K.J., Song, M.J., Arena, J., Kiyonaga, S., Marko, M., and McEwen, B.F. (1996). Mineralization of collagen may occur on fibril surfaces: Evidence from conventional and high voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117:24–35.
  • Moradian-Oldak, J., Weiner, S., Addadi, L., Landis, W.J., and Traub, W. (1991). Electron imaging and diffraction study of individual crystals of bone, mineralized tendon and synthetic carbonate apatite. Connect. Tissue Res. 25:219–228.
  • Arsenault, A.L., Frankland, B.W., and Ottensmeyer, F.P. (1991). Vectorial sequence of mineralization in the turkey leg tendon determined by electron spectroscopic imaging. Calcif. Tissue Int. 48:46–55.
  • Arsenault, A.L. (1991). Image analysis of collagen-associated mineral distribution in cryogenically prepared turkey leg tendons. Calcif. Tissue Int. 48:56–62.
  • Krefting, E.R., Barckhaus, R.H., Hohling, H.J., Bond, P., and Hosemann, R. (1980). Analysis of the crystal arrangement in collagen fibrils of mineralizing turkey tibia tendon. Cell Tissue Res. 205:485–492.
  • Likens, R.C., Piez, K.A., and Kunde, M.L. (1960). Mineralization of turkey leg tendon: III. Chemical nature of the protein and mineral phases. In: Calcification in Biological Systems, R. F. Sognnaes (ed.), pp. 143–149. (American Association for the Advancement of Science, Washington, DC).
  • Yamauchi, M., and Katz, E.P. (1993). The post-translational chemistry and molecular packing of mineralizing tendon collagens. Connect. Tissue Res. 29:81–98.
  • Glimcher, M.J., Brickley-Parsons, D., and Kossiva, D. (1979). Phosphopeptides and γ-carboxyglutamic acid-containing peptides in calcified turkey tendon: Their absence in uncalcified tendon: Calcif. Tissue Int. 27:281–284.
  • Landis, W.J., Librizzi, J.J., Dunn, M.G., and Silver, F.H. (1995). A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon. J. Bone Miner. Res. 10:859–867.
  • Silver, F.H., Christiansen, D., Snowhill, P., Chen, Y., and Landis, W.J. (2000). The role of mineral in the storage of elastic energy in turkey tendons. Biomacromolecules 105:953–963.
  • Floyd, W.E., Zaleske, D.J., Schiller, A.L., Trahan, C., and Mankin, H.J. (1987). Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J. Bone Joint Surg. [Am. ] 69A:185–190.
  • Trueta, J. (1963). The role of vessels in osteogenesis. J. Bone Joint Surg. [Br. ] 45:402–418.
  • Ganey, T.M., Love, S.M., and Ogden, J.A. (1992). Development of vascularization in the chondroepiphysis of the rabbit. J. Orthop. Res. 10:496–510.
  • Hunter, W., and Arsenault, A.L. (1990). Vascular invasion of the epiphyseal growth plate: Analysis of metaphyseal capillary ultrastructure and growth dynamics. Anat. Rec. 227:223–231.
  • Schenk, R., Spiro, D., and Wiener, J. (1967). Cartilage resorption in the tibial epiphyseal plate of growing rats. J. Cell Biol. 34:275–291.
  • Trueta, J., and Morgan, J.D. (1960). The vascular contribution to osteogenesis: I. Studies by the injection method. J. Bone Joint Surg. [Br. ] 42B:97–109.
  • Wilsman, N.J., and van Sickle, D.C. (1970). The relationship of cartilage canals to the initial osteogenesis of secondary centers of ossification. Anat. Rec. 168:381–392.
  • Aharinejad, S., Marks, S.C., Jr., Bock, P., Mackay, C.A., Larson, E.K., Tahamtani, A., Mason-Savas, A., and Firbas, W. (1995). Microvascular pattern in the metaphysis during bone growth. Anat. Rec. 242:111–122.
  • Morgan, J.D. (1959). Blood supply of growing rabbit’s tibia. J. Bone Joint Surg. [Br. ] 41B:185–203.
  • Arsenault, A.L. (1987). Microvascular organization at the epiphyseal–metaphyseal junction of growing rats. J. Bone Miner. Res. 2:143–149.
  • Schenk, R., Wiener, J., and Spiro, D. (1968). Fine structural aspects of vascular invasion of the tibial epiphyseal plate of growing rats. Acta Anat. 69:1–17.
  • Kraus, B.L.H., Kirker-Head, C.A., Kraus, K.H., Jakowski, R.M., and Steckel, R.R. (1995). The vascular supply of the tendon of the equine deep digital flexor muscle within the digital sheath. Vet. Surg. 24:102–111.
  • Edwards, D.A. (1946). The blood supply and lymphatic drainage of tendons. J. Anat. 80:147–152.
  • Brokis, J.G. (1953). The blood supply of the flexor and extensor tendons of the fingers in man. J. Bone Joint Surg. [Br. ] 35B:131–138.
  • Smith, J.W. (1965). Blood supply of tendons. Am. J. Surg. 109:272–276.
  • Frey, C., Shereff, M., and Greenidge, N. (1990). Vascularity of the posteriortibial tendon. J. Bone Joint Surg. [Am. ] 72:884–888.
  • Zhang, Z.Z., Zhong, S.Z., Sun, B., and Ho, G.T. (1990). Blood supply of the flexor digital tendon in the hand and its clinical significance. Surg. Radiol. Anat. 12:113–117.
  • Korn, S., and Schunke, M. (1989). The blood vessel system of the tendon of the long head of the biceps bracii muscle. Unfallchirurgie 92:43–47.
  • Gelberman, R.H., Khabie, V., and Cahill, C.J. (1991). The revascularization of healing flexor tendons in the digital sheath: A vascular injection study in dogs. J. Bone Joint Surg. [Am. ] 73:868–881.
  • Kujat, R. (1990). The microangiographic pattern of the rotator cuff of the dog. Arch. Orthop. Trauma Surg. 109:68–71.
  • Lundborg, G., Myrhage, R., and Rydevik, B. (1977). The vascularization of human flexor tendons within the digital synovial sheath region—Structural and functional aspects. J. Hand Surg. 2:417–427.
  • Merrilees, M.J., and Flint, M.H. (1980). Ultrastructural study of tension and pressure zones in a rabbit flexor tendon. Am. J. Anat. 157:87–106.
  • Li, G., Simpson, A.H., Kenwright, J., and Triffit, J.T. (1999). Effect of lengthening rate on angiogenesis during distraction osteogenesis. J. Orthop. Res., 17:362–367.
  • Ham, A.W., and Cormack, D.H. (1979). Histology. (J. B. Lippincott, Philadelphia).
  • Nie, D., Genge, B.R., Wu, L.N.Y., and Wuthier, R.E. (1995). Defect in formation of functional matrix vesicles by growth plate chondrocytes in avian tibial dyschondroplasia: Evidence of defective tissue vascularization. J. Bone Miner. Res. 10:1625–1634.
  • Farquharson, C., Berry, J.L., Mawer, E.B., Seawright, E., and Whitehead, C.C. (1995). Regulators of chondrocyte differentiation in tibial dyschondroplasia: An in vivo and in vitro study. Bone 17:279–286.
  • Praul, C.A., Gay, C.V., and Leach, R.M., Jr. (1997). Chondrocytes of the tibial dyschondroplastic lesion are apoptotic. Int. J. Dev. Biol. 41:621–626.
  • Isogai, N., Landis, W.J., Kim, T.H., Gerstenfeld, L.C., Upton, J., and Vacanti, J.P. (1999). Formation of phalanges and small joints. J. Bone Joint Surg. [Am. ] 81A:306–316.
  • Isogai, N., Landis, W.J., Mori, R., Gotoh, Y., Gerstenfeld, L.C., Upton, J., and Vacanti, J.P. (2000). Experimental use of fibrin glue to induce site-directed osteogenesis from cultured periosteal cells. Plast. Reconstr. Surg. 105:953–963.
  • Luo, G., Ducy, P., McKee, M.D., Pinero, G.J., Loyer, E., Behringer, R.R., and Karsenty, G. (1997). Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81.
  • Schinke, T., McKee, M.D., and Karsenty, G. (1999). Extracellular matrix calcification: Where is the action? Nature Genet. 21:150–151.
  • DeSimone, D.P., and Reddi, A.H. (1992). Vascularization and endochondral bone development: Changes in plasminogen activator activity. J. Orthop. Res. 10:320–324.
  • Kikkawa, M., Imai, S., and Hukuda, S. (2000). Altered postnatal expression of insulin-like growth factor-1 (IGF-1) and type X collagen preceding the Perthes’ disease-like lesion of a rat model. J. Bone Miner. Res. 15:111–119.
  • Harvey, E.B., Kaiser, H.E., and Rosenberg, L.E. (1968). An Atlas of the Domestic Turkey (Meleagris gallopavo): Myology and Osteology (U.S. Atomic Energy Commission, Division of Biology and Medicine, Washington, DC).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.