288
Views
166
CrossRef citations to date
0
Altmetric
Research Article

Multiple Signaling Pathways Converge on the Cbfa1/Runx2 Transcription Factor to Regulate Osteoblast Differentiation

, , , , &
Pages 109-116 | Published online: 06 Aug 2009

References

  • Ducy, P., Schinke, T., and Karsenty, G. (2000). The osteoblast: A sophisti- cated fibroblast under central surveillance. Science 289(5484):1501–1504.
  • Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., Selby, P.B., and Owen, M.J. (1997). Cbfa1, a candidate gene for clei- docranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5):765–771.
  • Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H., Owen, M.J., Mertelsmann, R., Zabel, B.U., and Olsen, B.R. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89(5):773–779.
  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. (1997). Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89(5):747–754.
  • Kern, B., Shen, J., Starbuck, M., and Karsenty, G. (2000). Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 5: 5.
  • Selvamurugan, N., Chou, W.Y., Pearman, A.T., Pulumati, M.R., and Partridge, N.C. (1998). Parathyroid hormone regulates the rat collagenase- 3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J. Biol. Chem. 273(17):10647–10657.
  • Xiao, G., Wang, D., Benson, M.D., Karsenty, G., and Franceschi, R.T. (1998). Role of the alpha2-integrin in osteoblast-specific gene expres- sion and activation of the Osf2 transcription factor. J. Biol. Chem. 273(49):32988–32994.
  • Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., Wozney, J.M., Kim, E.G., Choi, J.Y., Ryoo, H.M., and Bae, S.C. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol. Cell Biol. 20(23):8783–8792.
  • Franceschi, R.T. (1999). The developmental control of osteoblast-specific gene expression: Role of specific transcription factors and the extracellular matrix environment. Crit. Rev. Oral Biol. Med. 10(1):40–57.
  • Takeuchi, Y., Suzawa, M., Kikuchi, T., Nishida, E., Fujita, T., and Matsumoto, T. (1997). Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J. Biol. Chem. 272(46):29309–29316.
  • Zimmerman, D., Jin, F., Leboy, P., Hardy, S., and Damsky, C. (2000). Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev. Biol. 220(1):2–15.
  • Danen, E.H., Lafrenie, R.M., Miyamoto, S., and Yamada, K.M. (1998). Integrin signaling: Cytoskeletal complexes, MAP kinase activation, and regulation of gene expression. Cell Adhes. Comm. 6(2–3):217–224.
  • Xiao, G., Cui, Y., Ducy, P., Karsenty, G., and Franceschi, R.T. (1997). Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 preosteoblasts: Requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol. Endocrinol. 11(8):1103–1113.
  • Xiao, G., Gopalakrishnan, R., Jiang, D., Reith, E., Benson, M., and Franceschi, R.T. (2002). Bone morphogenetic proteins, extracellular ma- trix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17(1):101–110.
  • Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G., and Franceschi, R.T. (2000). MAPK pathways activate and phospho- rylate the osteoblast-specific transcription factor. Cbfa1. J. Biol. Chem. 275(6):4453–4459.
  • Thirunavukkarasu, K., Mahajan, M., McLarren, K.W., Stifani, S., and Karsenty, G. (1998). Two domains unique to osteoblast-specific transcrip- tion factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol. Cell Biol. 18(7):4197–4208.
  • Martin, G.R. (1998). The roles of FGFs in the early development of ver- tebrate limbs. Genes Dev. 12(11):1571–1586.
  • Mayahara, H., Ito, T., Nagai, H., Miyajima, H., Tsukuda, R., Taketomi, S., Mizoguchi, J., and Kato, K. (1993). In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 9(1):73–80.
  • Kannan, K., and Givol, D. (2000). FGF receptor mutations: Dimerization syndromes, cell growth suppression, and animal models. IUBMB Life 49(3):197–205.
  • Zhou, Y.X., Xu, X., Chen, L., Li, C., Brodie, S.G., and Deng, C.X. (2000). A Pro250Arg substitution in mouse Fgfr1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum. Mol. Genet. 9(13):2001–2008.
  • Boudreaux, J.M., and Towler, D.A. (1996). Synergistic induction of osteocalcin gene expression: Identification of a bipartite element conferring fibroblast growth factor 2 and cyclic AMP responsiveness in the rat osteo- calcin promoter. J. Biol. Chem. 271(13):7508–7515.
  • Nugent, M.A., and Iozzo, R.V. (2000). Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32(2):115–120.
  • Shimizu-Sasaki, E., Yamazaki, M., Furuyama, S., Sugiya, H., Sodek, J., and Ogata, Y. (2001). Identification of a novel response element in the rat bone sialoprotein (BSP) gene promoter that mediates constitutive and fibroblast growth factor 2-induced expression of BSP. J. Biol. Chem. 276(8):5459–5466.
  • Newberry, E.P., Willis, D., Latifi, T., Boudreaux, J.M., and Towler, D.A. (1997). Fibroblast growth factor receptor signaling activates the human interstitial collagenase promoter via the bipartite Ets-AP1 element. Mol. Endocrinol. 11(8):1129–1144.
  • Heath, J.K., Meikle, M.C., Atkinson, S.J., and Reynolds, J.J. (1984). A fac- tor synthesized by rabbit periosteal fibroblasts stimulates bone resorption and collagenase production by connective tissue cells in vitro. Biochim. Biophys. Acta. 800(3):301–305.
  • D’Alonzo, R.C., Selvamurugan, N., Karsenty, G., and Partridge, N.C. (2001). Physical interaction of the activator protein-1 factors, c-Fos and c- Jun, with Cbfa1 for collagenase-3 promoter activation. J. Biol. Chem. 18: 18.
  • Hess, J., Porte, D., Munz, C., and Angel, P. (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP- 1 composite element. J. Biol. Chem. 276(23):20029–20038.
  • Selvamurugan, N., Pulumati, M.R., Tyson, D.R., and Partridge, N.C. (2000). Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor al- pha1. J. Biol. Chem. 275(7):5037–5042.
  • Baker, J.C., and Harland, R.M. (1997). From receptor to nucleus: The Smad pathway. Curr. Opin. Gen. Dev. 7(4):467–473.
  • Watanabe, M., and Whitman, M. (1999). The role of transcription factors involved in TGFbeta superfamily signaling during development. Cell. Mol. Biol. (noisy-le-grand) 45(5):537–543.
  • Xiao, Z.S., Hinson, T.K., and Quarles, L.D. (1999). Cbfa1 isoform overex- pression upregulates osteocalcin gene expression in non-osteoblastic and pre-osteoblastic cells. J. Cell Biochem. 74(4):596–605.
  • Hanai, J., Chen, L.F., Kanno, T., Ohtani-Fujita, N., Kim, W.Y., Guo, W.H., Imamura, T., Ishidou, Y., Fukuchi, M., Shi, M.J., Stavnezer, J., Kawabata, M., Miyazono, K., and Ito, Y. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the im- munoglobulin germline Calpha promoter. J. Biol. Chem. 274 (44):31577–31582.
  • Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y., and Phipps, M.L. (1997). Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71(3):1842–1849.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.