103
Views
19
CrossRef citations to date
0
Altmetric
Original

Structural and Biochemical Analysis of the Effect of Immobilization Followed by Stretching on the Calcaneal Tendon of Rats

, , , , &
Pages 443-454 | Received 02 Feb 2008, Accepted 01 Jul 2008, Published online: 06 Aug 2009

REFERENCES

  • Birk D.E., Hahn R.A., Linsemayer C.Y., Zycband E.I. Characterization of fibril segments from chicken embryo cornea, dermis and tendon. Matrix Biol. 1996; 15: 111–118
  • Birk D.E., Irelstad R.L. Extracellular compartments in tendons morphogenesis: Collagen fibril, bundle and macroaggregate formation. J. Cell Biol. 1986; 103: 231–240
  • Ahtikoski A.M., Koskinem S.O.A., Virtanem P., Kovanem V., Risteli J., Takala T.E.S. Synthesis and degradation of type IV collagen in rat skeletal muscle during immobilization in shortened and lengthened positions. Acta Physiol. Scand. 2003; 177: 473–481
  • Hanson A.N., Bentley J.P. Qantitation of type I and type III collagen ratios in small samples of human tendon, blood vessels and atherosclerotic plaque. Anal. Biochem. 1983; 130: 32–40
  • Jozsa L., Kannus P., Balint B.J., Reffy A. Three-dimensional ultrastructure of human tendons. Acta Anat. 1991; 142: 306–312
  • Viidik A. Tensile strength properties of Achilles tendon systems in trained and untrained rabbits. Acta Othop. Scand. 1969; 40: 261–272
  • Benevides G.P., Pimentel E.R., Toyama M.H., Novello J.C., Marangone S., Gomes L. Biochemical and biomechanical analysis of tendon of caged and penned chickens. Connect. Tissue Res. 2004; 45: 206–215
  • Vilarta R., Vidal B.C. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: Aggregation and macromolecular order in collagen bundles. Matrix. 1989; 9: 55–61
  • Scott P.G., Nakano T., Dodd CM. Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim. Biophys. Acta. 1997; 1336: 254–262
  • Scott J.E. Extracellular matrix, supramolecular organisation and shape. J. Anat. 1995; 187: 259–269
  • Hedbom E., Heinegård D. Interaction of a 59-Kda connective tissue matrix protein with collagen I and collagen II. J. Biol. Chem. 1989; 264: 6898–6905
  • Birk D.E., Nurminskaya M.V., Zycband E.I. Collagen fibrillogenesis in situ: Fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev. Dyn. 1995; 202: 229–243
  • Rosenberg L.C., Choi H.V., Iang L., Johnson T.L., Pal S., Webber C., Reiner A., Poole A.R. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J. Biol. Chem. 1985; 260: 6304–6313
  • Oldberg A., Antonsson P., Lindblon K., Heinergard D. A collagen-binding 59-Kda protein (fibromodulin) is structurally related to the small intersticial proteoglycans PG-S1 and PG-S2 (decorin). EMBO J. 1989; 8: 2601–2604
  • Vidal B.C., Mello M.L.S. Proteoglycan arrangement in tendon collagen bundles. Cell. Mol. Biol. 1984; 30: 195–204
  • Gillard G.C., Reilly H.C., Bell-Booth P.G., Flint M.H. The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorium profundus tendon. Connect. Tiss. Res. 1979; 7: 37–46
  • Koob T.J., Vogel K.G. Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J. Orthop. Res. 1987; 5: 414–424
  • Vogel K.G., Koob T.J. Structural specialization in tendon under compression. Int. Rev. Cytol. 1989; 115: 267–293
  • Merilees M.J., Flint M.H. Ultrastructural study of tension and pressure zones in a rabbit lexor tendon. Am. J. Anat. 1980; 157: 87–106
  • Feitosa V.L.C., Esquisatto M.A.M., Joazeiro P.P., Gomes L., Felisbino S.L., Pimentel E.R. Variations in the glycosaminoglycan content, swelling properties and morphological aspects of different regions of the superficial digital flexor tendon of pigs. Cell. Mol. Biol. 2002; 48, online pub: 359–367
  • Feitosa V.L.C., Esquisatto M.A.M., Joazeiro P.P., Gomes L., Felisbino S.L., Pimentel E.R. Physicochemical and structural analysis of three s of the deep digital flexor tendon of pigs. Braz. J. Morphol. Sci. 2005; 22(2)113–119
  • O'Brien M. Structure and metabolism of tendons. Scand. J. Med. Sports 1997; 7: 55–61
  • Moore M.J., De Beause A. A quantitative ultrastructural study of rat tendon from birth to maturity. J. Anat. 1987; 153: 163–169
  • Esquisatto M.A.M., Joazeiro P.P., Pimentel E.R., Gomes L. Ultrastructural characteristics of tensional regions in tendons from rats of different ages. Braz. J. Morphol. Sci. 2003; 20(2)109–114
  • Vidal B.C., Carvalho H.F. Aggregational state and molecular order of tendons as a function of age. Matrix 1990; 10: 48–57
  • Aquino C.F., Fonseca S.T., Viana S.O. Comportamento biomecânico e resposta dos tecidos biológicos ao estresse e à imobilização. Fisioterapia em Movimento 2005; 18(2)35–43
  • Almeida F.M., Nagakaki W., Tomiosso T.C., Mattielo-Rosa S.M.G., Gomes L., Pimentel E.R. Effects of stretching on the biochemical and biomechanical properties of calcaneal tendon of rats—submitted. , et al, 2008
  • Carvalho C.M.M., Shimano A.C., Volpon J.B. Efeitos da imobilização e do exercício físico em algumas propriedades mecânicas do músculo esquelético. Revista Brasileira de Engenharia Biomédica 2002; 18(2)65–73
  • Engles M. Tissue response. Orthopaedic Physical Therapy 3rd ed., R.A. Donatelli, M.J. Wooden. Churchill Livingstone, Philadelphia 2001; cap.1: 1–24
  • Cooper R.R. Alterations during immobilization and regeneration of skeletal muscle in cats. J. Bone Joint Surg. 1972; 54: 919–925
  • Renner A.F., Carvalho E., Soares E., Mattiello-Rosa S. The effect of a passive muscle stretching protocol on the articular cartilage. OsteoArthr. Cart. 2006; 14: 196–202
  • Coutinho E.L., Gomes A.R.S, França C., Salvini T.F. A new model for the immobilization of the rat hind limb. Braz. J. Med. Biol. Res. 2002; 35: 1329–1332
  • Heinegård D., Sommarin Y. Isolation and characterization of proteoglycans. Meth. Enzymol 1987; 144: 319–373
  • Zingales B. Analysis of protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Genes and Antigens of Parasite, , et al. Rio de Janeiro, Fiocruz 1984; 357–363
  • Weber K., Osborni M. The reliability of molecular weight determination by SDS-polyacrylamide gel eletrophoresis. J. Biol. Chem. 1969; 244(16)4406–4412
  • Dietrich C.P., Dietrich S.M.C. Eletrophoretic behavior of acidic mucopolysaccharides in diamine buffers. Anal. Biochem. 1976; 70: 645–647
  • Stegemann H., Stalder K. Determination of hydroxyproline. Clin. Chim. Acta 1967; 18(2)267–273
  • Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248–254
  • Farndale R.W., Buttle D.J., Barret A.J. Improved quantatition and discrimination of sulfated glycosaminoglycans by use of dimethylmethyleneblue. Biochim. Biophys. Acta 1986; 883: 173–177
  • Kiernan J.A. Histological and histochemical methods. Theory and Practice 3rd ed., , et al. Pergamon Press, England 1981; 81–82
  • Vidal B.C., Mello M.L.S. Supramolecular order following binding of the dichroic birefringent sulfonic dye ponceau SS to collagen fibers. Biopolymers 2005; 78, online pub: 121–128
  • Melo M.L.S., Vidal B.C. Experimental tendon repair: Glycosaminoglycan arrangement in newly synthesized collagen fibers. Cell. Mol. Biol. 2003; 49(4)579–585
  • Kjaer M., Langberg H., Miller B.F., Boushel R., Crameri R., Koskinen S., Heinemeier K., Olesen J.L., Dossing S., Hansen M., Pedersen S.G., Rennie M.J., Magnusson P. Metabolic activity and collagen turnover in human tendon in response to physical activity. J. Musculoskel. Neuronal Interact. 2005; 5(1)41–52
  • Kannus P., Jozsa L., Renstrom P., Jarvinen M., Krist M., Lehto M., Oja P., Vuort I. The effect of trainning, immobilization and remobilization on musculoskeletal. Part 1: Trainning and immobilization. Scand. J. Med. Sci. Sports 1992; 2: 100–118
  • Kannus P., Jozsa L., Krist M., Lehto M., Jarvinen M. The effect of immobilization on myotendinous junction: An ultrastructural, histochemical and immunohistochemical study. Acta Physiol. Scand. 1992; 144: 387–394
  • Savolainen J., Myllyla R., Vihko V., Vããnãnem K., Takala T.E.S. Effects of denervation and immobilization on collagen synthesis in rat skeletal muscle and tendon. Am. J. Physiol. 1988; 254: 897–902
  • Amiel D., Woo S.L., Harwood F.L., Akeson W.H. The effect of immobilization on collagen turnover in connective tissue: A biochemical-biomechanical correlation. Acta Orthop. Scand. 1982; 53(3)325–332
  • Kovanen V. Effects of ageing and physical training on rat skeletal muscle. Acta Physiol. Scand. 1989; 577(suppl.)1–56
  • Koskinen S.O.A., Kjaer M., Mohr T., Sorensen F.B., Suuronen T., Takala T.E.S. Type IV collagen and its degradation in paralyzed human muscle: Effect of functional electrical stimulation. Muscle Nerve 2000; 23: 580–589
  • Langberg H., Skovgaard D., Petersen L.J., Bulow J., Kjaer M. Type 1 collagen turnover in peritendinous connective tissue after exercise determined by microdialysis. J. Physiol. 1999; 521: 299–306
  • Woessner J.F. Matrix metalloproteinases and their inhibitors in connective tissue remodelling. FASEB J. 1991; 5: 2145–2154
  • Nagase H., Woessner J.F. Matrix metalloproteinases. J. Biol. Chem. 1999; 274: 21491–21494
  • Parry D.A., Craig A.S., Barnes GR. Tendon and ligament from the horse: An ultrastructural study of collagen fibers and elastic fibers as a function of age. Proc. R. Soc. Lond. B. Biol. Sci. 1976; 203: 293–303
  • Archambault J.M., Elfervig-wall M.K., Tsuzaki M., Herzog W., Banes A.J. Rabbit tendon cells produce mmp-3 in response to fluid flow without significant calcium transients. J. Biomech. 2002; 35: 303–309
  • Archambault J.M., Tsuzaki M., Herzog W., Banes A.J. Stretch and interleukin-1β induce matrix metalloproteinases in rabbit tendon cells in vitro. J. Orthop. Res. 2002; 20: 36–39
  • Langberg H., Rosendal L., Kjaer M. Trainning-induced changes in peritendinous type I collagen turnover determined by microdialysis im human. J. Physiol. 2001; 534: 297–302
  • Jozsa L. Morphological and biochemical alteration in hypokinetic human tendons. Finn. Sports Exerc. Med. 1984; 3: 111–114
  • Karpakka J., Väänänen K., Virtanen P., Savolainen J., Orava S., Takala T.E. The effects of remobilization and exercise on collagen biosynthesis in rat tendon. Acta Phys. Scand. 1990; 139(1)139–145
  • Vogel K.G., Heinegård D. Characterization of proteoglycans from adult bovine tendon. J. Biol. Chem. 1985; 260: 298–306
  • Covizi D.Z., Felisbino S.L., Gomes L., Pimentel E.R., Carvalho H.F. Regional adaptations in three rat tendons. Tissue Cell. 2001; 33(5)483–490
  • Carvalho H.F., Felisbino S.L. Development of the pressure-bearing tendon the bullfrog, rana catesbeiana. Anat. Embryol. 1999; 200: 55–64
  • Rufai A., Ralphs J.R., Benjamin M. Ultrastructure of fibrocartilages at the insertion of the rat Achilles tendon. J. Anat. 1996; 189: 185–191
  • Jozsa L., Kannus P., Jarvinem M., Kvist M., Lehto M. Denervation and immobilization induced changes in myotendinous junction. A comparative histological, histochemical study on the muscle-tendons unit of humans and rats. Eur. J. Exp. Muskuloskel. Res. 1992; 1: 105–112
  • Benjamin M., Evans E.J. Fibrocartilage. J. Anat. 1990; 171: 1–15
  • Benjamin M., Ralphs J.R. Fibrocartilage in tendous and ligaments—an adaptation to compressive load. J. Anat. 1998; 193: 481–494

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.