213
Views
26
CrossRef citations to date
0
Altmetric
Original Research

Immobilization-Induced Cartilage Degeneration Mediated Through Expression of Hypoxia-Inducible Factor-1α, Vascular Endothelial Growth Factor, and Chondromodulin-I

, , , , , , , , , , & show all
Pages 37-45 | Received 27 May 2008, Accepted 13 Aug 2008, Published online: 06 Aug 2009

REFERENCES

  • Okita M., Yoshimura T., Nakano J., Motomura M., Eguchi K. Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle. J. Muscle Res. Cell Motil. 2004; 25: 159–166
  • Jurvelin J., Kiviranta I., Tammi M., Helminen J.H. Softening of canine articular cartilage after immobilization of the knee joint. Clin. Orthop. Relat. Res. 1986; 207: 246–252
  • Haapala J., Arokoski J.P., Hyttinen M.M., Lammi M., Tammi M., Kovanen V., Helminen H.J., Kiviranta I. Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin. Orthop. Relat. Res. 1999; 362: 218–229
  • Leroux M.A., Cheung H.S., Bau J.L., Wang J.Y., Howell D.S., Setton L.A. Altered mechanics and histomorphometry of canine tibial cartilage following joint immobilization. Osteoarthr. Cartil. 2001; 9: 633–640
  • Trudel G., Himori K., Uhthoff H.K. Contrasting alterations of apposed and unapposed articular cartilage during joint contracture formation. Arch. Phys. Med. Rehabil. 2005; 86: 90–97
  • Richardson D.W., Clark C.C. Effects of short-term cast immobilization on equine articular cartilage. Am. J. Vet. Res. 1993; 54: 449–453
  • Jortikka M.O., Inkinen R.I., Tammi M.I., Parkkinen J.J., Haapala J., Kiviranta I., Helminen H.J., Lammi M.J. Immobilisation causes long lasting matrix changes both in the immobilised and contralateral joint cartilage. Ann. Rheum. Dis. 1997; 56: 255–261
  • Säämänen A.M., Tammi M., Jurvelin J., Kiviranta I., Helminen H.J. Proteoglycan alterations following immobilization and remobilization in the articular cartilage of young canine knee (stifle) joint. J. Orthop. Res. 1990; 8: 863–873
  • Okazaki R., Sakai A., Ootsuyama A., Sakata T., Nakamura T., Norimura T. Apoptosis and p53 expression in chondrocytes relate to degeneration in articular cartilage of immobilized knee joints. J. Rheumatol. 2003; 30: 559–566
  • Smith R.L., Thomas K.D., Shulman D.J., Carter D.R., Wong M., van der Meulen M.C. Rabbit knee immobilization: Bone remodeling precedes cartilage degradation. J. Orthop. Res. 1992; 10: 88–95
  • Harrison M.H., Schajowicz F., Trueta J. Osteoarthritis of the hip: A study of the nature and evolution of the disease. J. Bone Joint. Surg. Br. 1953; 35: 598–626
  • Clark J.M. The structure of vascular channels in the subchondral plate. J. Anat. 1990; 171: 105–115
  • Shibakawa A., Yudoh K., Masuko H.K., Kato T., Nishioka K., Nakamura H. The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthr. Cart. 2005; 13: 679–687
  • Fermor B., Christensen S.E., Youn I., Cernanec J.M., Davies C.M., Weinberg J.B. Oxygen, nitric oxide and articular cartilage. Eur. Cell Mater. 2007; 11(13)56–65, discussion 65
  • Silver I.A. Measurement of pH and ionic composition of pericellular sites. Philos. Trans. R Soc. Lond. B. Biol. Sci. 1975; 271: 261–272
  • Stevens C.R., Williams R.B., Farrell A.J., Blake D.R. Hypoxia and inflammatory synovitis: Observations and speculation. Ann. Rheum. Dis. 1991; 50: 124–132
  • Pufe T., Lemke A., Kurz B., Petersen W., Tillmann B., Grodzinsky A.J., Mentlein R. Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. Am. J. Pathol. 2004; 164: 185–192
  • Semenza G.L. Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J. Lab. Clin. Med. 1998; 131: 207–214
  • Semenza G.L. HIF-1 and human disease: One highly involved factor. Genes Dev 2000; 14: 1983–1991
  • Polverini P.J. The pathophysiology of angiogenesis. Crit. Rev. Oral. Biol. Med. 1995; 6: 230–247
  • Garcia-Ramirez M., Toran N., Andaluz P., Carrascosa A., Audi L. Vascular endothelial growth factor is expressed in human fetal growth cartilage. J. Bone Miner. Res. 2000; 15: 534–540
  • Pulsatelli L., Dolzani P., Silvestri T., Frizziero L., Facchini A., Meliconi R. Vascular endothelial growth factor activates on osteoarthritic chondrocytes. Clin. Exp. Rheumatol. 2005; 23: 487–493
  • Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997; 18: 4–25
  • Madan A., Curtin P.T. A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc. Natl. Acad. Sci. USA 1993; 90: 3928–3932
  • Hiraki Y., Tanaka H., Inoue H., Kondo J., Kamizono A., Suzuki F. Molecular cloning of a new class of cartilage-specific matrix, chondromodulin-I, which stimulates growth of cultured chondrocytes. Biochem. Biophys. Res. Commun. 1991; 175: 971–977
  • Hiraki Y., Inoue H., Iyama K., Kamizono A., Ochiai M., Shukunami C., Iijima S., Suzuki F., Kondo J. Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J. Biol. Chem. 1997; 272: 32419–32426
  • Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. J. Bone Joint. Surg. Am. 1980; 62: 1232–1251
  • Salter R.B., Bell R.S., Keeley F.W. The protective effect of continuous passive motion in living articular cartilage in acute septic arthritis: An experimental investigation in the rabbit. Clin. Orthop. Relat. Res. 1981; 159: 223–247
  • O’Driscoll S.W., Kumar A., Salter R.B. The effect of the volume of effusion, joint position and continuous passive motion on intraarticular pressure in the rabbit knee. J. Rheumatol. 1983; 10: 360–363
  • Pedowitz R.A., Gershuni D.H., Crenshaw A.G., Petras S.L., Danzig L.A., Hargens A.R. Intraarticular pressure during continuous passive motion of the human knee. J. Orthop. Res. 1989; 7: 530–537
  • Kokolakis G., Panagis L., Stathopoulos E., Giannikaki E., Tosca A., Krüger-Krasagakis S. From the protein to the graph: How to quantify immunohistochemistry staining of the skin using digital imaging. J. Immunol. Methods 2008; 29: 140–146
  • Mao J.J., Rahemtulla F., Scott P.G. Proteoglycan expression in the rat temporomandibular joint in response to unilateral bite raise. J. Dent. Res. 1998; 77: 1520–1528
  • O’Connor K.M. Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats. J. Bone Miner. Res. 1997; 12: 580–589
  • Carter D.R., Wong M. The role of mechanical loading histories in the development of diarthrodial joints. J. Orthop. Res. 1988; 6: 804–816
  • Kiviranta I., Tammi M., Jurvelin J., Arokoski J., Säämänen A.M., Helminen H.J. Articular cartilage thickness and glycosaminoglycan distribution in the young canine knee joint after remobilization of the immobilized limb. J. Orthop. Res. 1994; 12: 161–167
  • Weaver B.T., Haut R.C. Enforced exercise after blunt trauma significantly affects biomechanical and histological changes in rabbit retro-patellar cartilage. J. Biomech. 2005; 38: 1177–1183
  • Yaoita M. Effect of immobilization and subsequent remobilization of knee joint of the rats. J. Jap. Orthop. Ass. 1966; 40: 431–451, (in Japanese).
  • Björkström S., Goldie I.F. A study of the arterial supply of the patella in the normal state, in chondromalacia patellae and in osteoarthrosis. Acta Orthop. Scand. 1980; 51: 63–70
  • Lane L.B., Villacin A., Bullough P.G. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J. Bone Joint. Surg. Br. 1977; 59: 272–278
  • Duncan H., Jundt J., Riddle J.M., Pitchford W., Christopherson T. The tibial subchondral plate. A scanning electron microscopic study. J. Bone Joint. Surg. Am. 1987; 69: 1212–1220
  • Ogata K., Whiteside L.A., Lesker P.A. Subchondral route for nutrition to articular cartilage in the rabbit. Measurement of diffusion with hydrogen gas in vivo. J. Bone Joint. Surg. Am. 1978; 60: 905–910
  • Woods C.G., Greenwald A.S., Haynes D.W. Subchondral vascularity in the human femoral head. Ann. Rheum. Dis. 1970; 29: 138–142
  • Bullough P.G. The geometry of diarthrodial joints, its physiologic maintenance, and the possible significance of age-related changes in geometry-to-load distribution and the development of osteoarthritis. Clin. Orthop. Relat. Res. 1981; 156: 61–66
  • Burr D.B., Schaffler M.B. The involvement of subchondral mineralized tissues in osteoarthrosis: Quantitative microscopic evidence. Microsc. Res. Tech. 1997; 37: 343–357
  • Hayami T., Pickarski M., Wesolowski G.A., McLane J., Bone A., Destefano J., Rodan G.A., Duong le T. The role of subchondral bone remodeling in osteoarthritis. Reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transaction model. Arthr. Rheum. 2004; 50: 1193–1206
  • Tanaka E., Aoyama J., Miyauchi M., Takata T., Hanaoka K., Iwabe T., Tnne K. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem. Cell Biol. 2005; 123: 275–281
  • Rabie A.B., Hägg U. Factors regulating mandibular condylar growth. Am. J. Orthod. Dentofacial. Orthop. 2002; 122: 401–409
  • Rabie A.B., Leung F.Y., Chayanupatkul A., Hägg U. The correlation between neovascularization and bone formation in the condyle during forward mandibular positioning. Angle. Orthod. 2002; 72: 431–438
  • Leung F.Y., Rabie A.B., Hägg U. Neovascularization and bone formation in the condyle during stepwise mandibular advancement. Eur. J. Orthod. 2004; 26: 137–141
  • Forsythe J.A., Jiang B.H., Iyer N.V., Agani F., Leung S.W., Koos R.D., Semenza G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 1996; 16: 4604–4613
  • Kallio P.J., Wilson W.J., O’Brien S., Makino Y., Poellinger L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J. Biol. Chem. 1999; 274: 6519–6525
  • Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275
  • Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T.Y., Huang L.E., Pavletich N., Chau V., Kaelin W.G. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2000; 2: 423–427
  • Huang L.E., Gu J., Schau M., Bunn H.F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 1998; 95: 7987–7992
  • Jozsa L., Jarvinen M., Kannus P., Reffy A. Fine structural changes in the artivular cartilage of the rat's knee following short-term immobilization in various positions: A scanning electron microscopical study. Int. Orthop. 1987; 11: 129–133
  • Hiraki Y., Shukunami C. Angiogenesis inhibitors localized in hypovascular mesenchymal tissues: Chondromodulin-I and tenomodulin. Connect. Tissue Res. 2005; 46: 3–11
  • Hayami T., Funaki H., Yaoeda K., Mitui K., Yamagiwa H., Tokunaga K., Hatano H., Kondo J., Hiraki Y., Yamamoto T., Duong le T., Endo N. Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J. Rheumatol. 2003; 30: 2207–2217
  • Hiraki Y., Shukunami C. Chondromodulin-I as a novel cartilage-specific growth-modulating factor. Pediatr. Nephrol. 2000; 14: 602–605

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.