813
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment

ORCID Icon & ORCID Icon
Pages 248-261 | Received 25 Jun 2019, Accepted 22 Aug 2019, Published online: 06 Sep 2019

References

  • Strangeways TSP, Fell HB. Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro.—II. The development of the isolated early embryonic eye of the fowl when cultivated in vitro. Proc R Soc London B. 1926;100(703):273–283.
  • Fell HB, Robison R. The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro. Biochem J. 1929;23(4):767–784.5. doi:10.1042/bj0230767.
  • Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc B. 1938;126(843):136–195.
  • Ramsey RW, Street SF. The isometric length‐tension diagram of isolated skeletal muscle fibers of the frog. J Cell Comp Physiol. 1940;15:11–34. doi:10.1002/(ISSN)1553-0809.
  • Zoeller JJ, McQuillan A, Whitelock J, Ho S-Y, Iozzo RV. A central function for perlecan in skeletal muscle and cardiovascular development. J Cell Biol. 2008 Apr; 181(2):381–394. doi:10.1083/jcb.200708022.
  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development. 2011 Sep; 138(17):3625–3637. doi:10.1242/dev.064162.
  • Worton R. Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. Science. 1995 Nov; 270(5237):755–756. doi:10.1126/science.270.5237.755.
  • Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011 Sep; 44(3):318–331. doi:10.1002/mus.22094.
  • Lepper C, Partridge TA, Fan CM. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011 Sep; 138(17):3639–3646. doi:10.1242/dev.067595.
  • Dumont NA, Bentzinger CF, Sincennes M-C, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015 Jul; 5(3):1027–1059. doi:10.1002/cphy.c140068.
  • Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. Faseb J. 2014 Apr; 28(4):1654–1665. doi:10.1096/fj.13-239426.
  • Thomas K, Engler AJ, Meyer GA. Extracellular matrix regulation in the muscle satellite cell niche. Connect Tissue Res. 2015 Feb; 56(1):1–8. doi:10.3109/03008207.2014.947369.
  • Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013 Jan; 93(1):23–67. doi:10.1152/physrev.00043.2011.
  • Clark WE. An experimental study of the regeneration of mammalian striped muscle. J Anat. 1946 Jan;80(Pt 1):24–36.4.
  • Pogogeff IA, Murray MR. Form and behavior of adult mammalian skeletal muscle in vitro. Anat Rec. 1946 Jul;95:321–335.
  • Godman G. On the regeneration and redifferentiation of mammalian striated muscle. J Morphol. 1957;27–81. doi:10.1002/jmor.1051000103.
  • MAURO A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961 Feb;9:493–495. doi:10.1083/jcb.9.2.493.
  • Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol. 1986 May; 115(1):129–139. doi:10.1016/0012-1606(86)90234-4.
  • Bischoff R. Analysis of muscle regeneration using single myofibers in culture. Med Sci Sports Exerc. 1989 Oct;21(5 Suppl):S164–72.
  • Bischoff R. Interaction between satellite cells and skeletal muscle fibers. Development. 1990 Aug;109(4):943–952.
  • Chaudry IH, Gould MK. Kinetics of glucose uptake in isolated soleus muscle. Biochim Biophys Acta. 1969 May; 177(3):527–536. doi:10.1016/0304-4165(69)90315-8.
  • Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988 Oct;404:71–82. doi:10.1113/jphysiol.1988.sp017279.
  • Zhang SJ, Bruton JD, Katz A, Westerblad H. Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol. 2006 Apr; 572(Pt 2):551–559. doi:10.1113/jphysiol.2005.104521.
  • Warren GL, Lowe DA, Hayes DA, Karwoski CJ, Prior BM, Armstrong RB. Excitation failure in eccentric contraction-induced injury of mouse soleus muscle. J Physiol. 1993 Aug;468:487–499. doi:10.1113/jphysiol.1993.sp019783.
  • Ryder JW, Fahlman R, Wallberg-Henriksson H, Alessi DR, Krook A, Zierath JR. Effect of contraction on mitogen-activated protein kinase signal transduction in skeletal muscle. Involvement of the mitogen- and stress-activated protein kinase 1. J Biol Chem. 2000 Jan; 275(2):1457–1462. doi:10.1074/jbc.275.2.1457.
  • McGeachie JK, Grounds MD, Partridge TA, Morgan JE. Age-related changes in replication of myogenic cells in mdx mice: quantitative autoradiographic studies. J Neurol Sci. 1993 Nov; 119(2):169–179. doi:10.1016/0022-510x(93)90130-q.
  • Sousa-Victor P, Gutarra S, García-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V, Jardí M, Ballestar E, González S, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014 Feb; 506(7488):316–321. doi:10.1038/nature13013.
  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DDW. 3D timelapse analysis of muscle satellite cell motility. Stem Cells. 2009 Oct; 27(10):2527–2538. doi:10.1002/stem.178.
  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010 Aug; 329(5995):1078–1081. doi:10.1126/science.1191035.
  • Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim. 1995 Nov; 31(10):773–779. doi:10.1007/BF02634119.
  • Pasut A, Jones AE, Rudnicki MA. Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J Vis Exp. 2013 Mar;(73):e50074.
  • Brown LD, Schneider MF. Delayed dedifferentiation and retention of properties in dissociated adult skeletal muscle fibers in vitro. In Vitro Cell Dev Biol Anim. 2002 Jul - Aug; 38(7):411–422. doi:10.1290/1071-2690(2002)038<0411:DDAROP>2.0.CO;2.
  • Vogler TO, Gadek KE, Cadwallader AB, Elston TL, Olwin BB. Isolation, culture, functional assays, and immunofluorescence of myofiber-associated satellite cells. Methods Mol Biol. 2016;1460:141–162. doi:10.1007/978-1-4939-3810-0_11.
  • Ravenscroft G, Nowak KJ, Jackaman C, Clément S, Lyons MA, Gallagher S, Bakker AJ, Laing NG. Dissociated flexor digitorum brevis myofiber culture system–a more mature muscle culture system. Cell Motil Cytoskeleton. 2007 Oct; 64(10):727–738. doi:10.1002/cm.20223.
  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007 Jun; 129(5):999–1010. doi:10.1016/j.cell.2007.03.044.
  • Le Grand F, Jones AE, Seale V, Scimè A, Rudnicki MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009 Jun; 4(6):535–547. doi:10.1016/j.stem.2009.03.013.
  • Anderson J, Pilipowicz O. Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide. 2002 Aug;7(1):36–41.
  • Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014 Mar; 20(3):265–271. doi:10.1038/nm.3465.
  • Troy A, Cadwallader AB, Fedorov Y, Tyner K, Tanaka KK, Olwin BB. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell. 2012 Oct; 11(4):541–553. doi:10.1016/j.stem.2012.05.025.
  • Rosenblatt JD, Parry DJ, Partridge TA. Phenotype of adult mouse muscle myoblasts reflects their fiber type of origin. Differentiation. 1996 Mar; 60(1):39–45. doi:10.1046/j.1432-0436.1996.6010039.x.
  • Anderson JE, Wozniak AC, Mizunoya W. Single muscle-fiber isolation and culture for cellular, molecular, pharmacological, and evolutionary studies. Methods Mol Biol. 2012;798:85–102. doi:10.1007/978-1-61779-343-1_6.
  • Keire P, Shearer A, Shefer G, Yablonka-Reuveni Z. Isolation and culture of skeletal muscle myofibers as a means to analyze satellite cells. Methods Mol Biol. 2013;946:431–468. doi:10.1007/978-1-62703-128-8_28.
  • Gallot YS, Hindi SM, Mann AK, Kumar A. Isolation, culture, and staining of single myofibers. Bio Protoc. 2016 Oct;6(19). doi:10.21769/BioProtoc.1942.
  • Brun CE, Wang YX, Rudnicki MA. Single EDL myofiber isolation for analyses of quiescent and activated muscle stem cells. Methods Mol Biol. 2018;1686:149–159. doi:10.1007/978-1-4939-7371-2_11.
  • Bekoff A, Betz WJ. Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J Physiol. 1977 Sep; 271(1):25–40. doi:10.1113/jphysiol.1977.sp011988.
  • Palomero J, Pye D, Kabayo T, Jackson MJ. Effect of passive stretch on intracellular nitric oxide and superoxide activities in single skeletal muscle fibres: influence of ageing. Free Radic Res. 2012 Jan; 46(1):30–40. doi:10.3109/10715762.2011.637203.
  • Goldspink DF. The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J Physiol. 1977 Jan; 264(1):267–282. doi:10.1113/jphysiol.1977.sp011667.
  • Hornberger TA, Chien S. Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem. 2006 Apr; 97(6):1207–1216. doi:10.1002/jcb.20671.
  • Young ME, Radda GK, Leighton B. Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem J. 1997 Feb; 322(Pt 1):223–228. doi:10.1042/bj3220223.
  • Hanson MG, Niswander LA. An explant muscle model to examine the refinement of the synaptic landscape. J Neurosci Methods. 2014 Dec;238:95–104. doi:10.1016/j.jneumeth.2014.09.013.
  • Smith LR, Barton ER. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am J Physiol Cell Physiol. 2014 May; 306(10):C889–98. doi:10.1152/ajpcell.00383.2013.
  • Leijendekker WJ, Elzinga G. Metabolic recovery of mouse extensor digitorum longus and soleus muscle. Pflugers Arch. 1990 Apr; 416(1–2):22–27. doi:10.1007/bf00370217.
  • Close R. Force: velocity properties of mouse muscles. Nature. 1965 May; 206(985):718–719. doi:10.1038/206718a0.
  • Cifelli C, Bourassa F, Gariépy L, Banas K, Benkhalti M, Renaud J-M. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. J Physiol. 2007 Jul; 582(Pt 2):843–857. doi:10.1113/jphysiol.2007.130955.
  • Moorwood C, Liu M, Tian Z, Barton ER. Isometric and eccentric force generation assessment of skeletal muscles isolated from murine models of muscular dystrophies. J Vis Exp. 2013 Jan;(71):e50036.
  • Kolbeck RC, Nosek TM. Fatigue of rapid and slow onset in isolated perfused rat and mouse diaphragms. J Appl Physiol. 1994 Oct; 77(4):1991–1998. doi:10.1152/jappl.1994.77.4.1991.
  • McArdle JJ, Angaut-Petit D, Mallart A, Bournaud R, Faille L, Brigant JL. Advantages of the triangularis sterni muscle of the mouse for investigations of synaptic phenomena. J Neurosci Methods. 1981 Aug;4(2):109–115.
  • Chleboun GS, Patel TJ, Lieber RL. Skeletal muscle architecture and fiber-type distribution with the multiple bellies of the mouse extensor digitorum longus muscle. Acta Anat (Basel). 1997;159(2–3):147–155. doi:10.1159/000147977.
  • Park KH, Brotto L, Lehoang O, Brotto M, Ma J, Zhao X. Ex vivo assessment of contractility, fatigability and alternans in isolated skeletal muscles. J Vis Exp. 2012 Nov;(69):e4198.
  • Woo S-H, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR, Francisco A, Jessell TM, Wilkinson KA, Patapoutian A. Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci. 2015 Dec; 18(12):1756–1762. doi:10.1038/nn.4162.
  • Barton ER, Wang BJ, Brisson BK, Sweeney HL. Diaphragm displays early and progressive functional deficits in dysferlin-deficient mice. Muscle Nerve. 2010 Jul; 42(1):22–29. doi:10.1002/mus.21645.
  • Wilkinson KA, Kloefkorn HE, Hochman S, Jones KE. Characterization of muscle spindle afferents in the adult mouse using an in vitro muscle-nerve preparation. PLoS One. 2012;7(6):e39140. doi:10.1371/journal.pone.0039140.
  • Clark AW, Bandyopadhyay S, DasGupta BR. The plantar nerves-lumbrical muscles: a useful nerve-muscle preparation for assaying the effects of botulinum neurotoxin. J Neurosci Methods. 1987 Apr;19(4):285–295. doi:10.1016/0165-0270(87)90071-9.
  • Hansen PA, Gulve EA, Holloszy JO. Suitability of 2-deoxyglucose for in vitro measurement of glucose transport activity in skeletal muscle. J Appl Physiol. 1994 Feb;76(2):979–985. doi:10.1152/jappl.1994.76.2.979.
  • Kerschensteiner M, Reuter MS, Lichtman JW, Misgeld T. Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants. Nat Protoc. 2008;3(10):1645–1653. doi:10.1038/nprot.2008.160.
  • Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003 May;423(6936):168–172. doi:10.1038/nature01573.
  • Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, Pan Z, Komazaki S, Brotto M, Takeshima H, Ma J. MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol. 2009 Jan;11(1):56–64. doi:10.1038/ncb1812.
  • Swaggart KA, Demonbreun AR, Vo AH, Swanson KE, Kim EY, Fahrenbach JP, Holley-Cuthrell J, Eskin A, Chen Z, Squire K, Heydemann A, Palmer AA, Nelson SF, McNally EM. Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc Natl Acad Sci U S A. 2014 Apr;111(16):6004–6009. doi:10.1073/pnas.1324242111.
  • Lukyanenko V, Muriel JM, Bloch RJ. Coupling of excitation to Ca. J Physiol. 2017 Aug;595(15):5191–5207. doi:10.1113/JP274515.
  • Prosser BL, Hernández-Ochoa EO, Lovering RM, Andronache Z, Zimmer DB, Melzer W, Schneider MF. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. Am J Physiol Cell Physiol. 2010 Nov;299(5):C891–902. doi:10.1152/ajpcell.00180.2010.
  • Hernández-Ochoa EO, Robison P, Contreras M, Shen T, Zhao Z, Schneider MF. Elevated extracellular glucose and uncontrolled type 1 diabetes enhance NFAT5 signaling and disrupt the transverse tubular network in mouse skeletal muscle. Exp Biol Med (Maywood). 2012 Sep;237(9):1068–1083. doi:10.1258/ebm.2012.012052.
  • Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015 Dec;21(12):1455–1463. doi:10.1038/nm.3990.
  • Wang YX, Feige P, Brun CE, Hekmatnejad B, Dumont NA, Renaud J-M, Faulkes S, Guindon DE, Rudnicki MA. EGFR-aurka signaling rescues polarity and regeneration defects in dystrophin-deficient muscle stem cells by increasing asymmetric divisions. Cell Stem Cell. 2019 Mar;24(3):419–432.e6. doi:10.1016/j.stem.2019.01.002.
  • Siegel AL, Kuhlmann PK, Cornelison DD. Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skelet Muscle. 2011 Feb;1(1):7. doi:10.1186/2044-5040-1-7.
  • Lin SH, Cheng YR, Banks RW, Cheng L, Liu Y, Yang Y, Fan P, Wang Q, Lin Y, Zhang J, Li C, Mao Y, Wang Q, Su X, Zhang S, Peng Y, Yang H, Hu X, Yang J, Huang M, Xiang R, Yu D, Zhou Z, Wei Y, Deng H. Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nat Commun. 2016 May;7:11460. doi:10.1038/ncomms11996.
  • Connizzo BK, Grodzinsky AJ. Release of pro-inflammatory cytokines from muscle and bone causes tenocyte death in a novel rotator cuff in vitro explant culture model. Connect Tissue Res. 2018 Sep;59(5):423–436. doi:10.1080/03008207.2018.1439486.
  • Kwee BJ, Mooney DJ. Biomaterials for skeletal muscle tissue engineering. Curr Opin Biotechnol. 2017 Oct;47:16–22. doi:10.1016/j.copbio.2017.05.003.
  • Juhas M, Bursac N. Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells. Biomaterials. 2014 Nov;35(35):9438–9446. doi:10.1016/j.biomaterials.2014.07.035.
  • Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, Muoio DM, Bursac N. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials. 2019 Apr;198:259–269. doi:10.1016/j.biomaterials.2018.08.058.
  • Afshar Bakooshli M, Lippmann ES, Mulcahy B, Iyer N, Nguyen CT, Tung K, Stewart BA, Van den Dorpel H, Fuehrmann T, Shoichet M, Bigot A. A 3D culture model of innervated human skeletal muscle enables studies of the adult neuromuscular junction. Elife. 2019;8:e44530. doi:10.7554/eLife.44530.
  • Morimoto Y, Kato-Negishi M, Onoe H, Takeuchi S. Three-dimensional neuron-muscle constructs with neuromuscular junctions. Biomaterials. 2013 Dec;34(37):9413–9419. doi:10.1016/j.biomaterials.2013.08.062.
  • Ko IK, Lee B-K, Lee SJ, Andersson K-E, Atala A, Yoo JJ. The effect of in vitro formation of acetylcholine receptor (AChR) clusters in engineered muscle fibers on subsequent innervation of constructs in vivo. Biomaterials. 2013 Apr;34(13):3246–3255. doi:10.1016/j.biomaterials.2013.01.029.
  • Wernbom M, Augustsson J, Thomeé R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225–264. doi:10.2165/00007256-200737030-00004.
  • Negroni E, Bigot A, Butler-Browne GS, Trollet C, Mouly V. Cellular therapies for muscular dystrophies: frustrations and clinical successes. Hum Gene Ther. 2016 Feb;27(2):117–126. doi:10.1089/hum.2015.139.
  • Meyer GA, Ward SR. Developmental biology and regenerative medicine: addressing the vexing problem of persistent muscle atrophy in the chronically torn human rotator cuff. Phys Ther. 2016 May;96(5):722–733. doi:10.2522/ptj.20150029.
  • Li EW, McKee-Muir OC, Gilbert PM. Cellular biomechanics in skeletal muscle regeneration. Curr Top Dev Biol. 2018;126:125–176. doi:10.1016/bs.ctdb.2017.08.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.