873
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Intervertebral disc organ culture for the investigation of disc pathology and regeneration – benefits, limitations, and future directions of bioreactors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 304-321 | Received 30 Jul 2019, Accepted 04 Sep 2019, Published online: 26 Sep 2019

References

  • Roughley PJ, Melching LI, Heathfield TF, Pearce RH, Mort JS. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J. 2006;15(Suppl 3):S326–332. doi:10.1007/s00586-006-0127-7.
  • Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31(18):2151–2161. doi:10.1097/01.brs.0000231761.73859.2c.
  • Urban JPG, Smith S, Fairbank JCT. Nutrition of the intervertebral disc. Spine. 2004;29(23):2700–2709. doi:10.1097/01.brs.0000146499.97948.52.
  • Liebscher T, Haefeli M, Wuertz K, Nerlich AG, Boos N. Age-related variation in cell density of human lumbar intervertebral disc. Spine. (Phila Pa 1976). 2011; 36(2):153–159. doi:10.1097/BRS.0b013e3181cd588c.
  • Weiler C, Schietzsch M, Kirchner T, Nerlich AG, Boos N, Wuertz K. Age-related changes in human cervical, thoracal and lumbar intervertebral disc exhibit a strong intra-individual correlation. Eur Spine J. 2012;21(Suppl 6):S810–818. doi:10.1007/s00586-011-1922-3.
  • Naing MW, Williams DJ. Three-dimensional culture and bioreactors for cellular therapies. Cytotherapy. 2011;13(4):391–399. doi:10.3109/14653249.2011.556352.
  • Wang JY, Baer AE, Kraus VB, Setton LA. Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine. (Phila Pa 1976). 2001; 26(16):1747–1751. discussion 1752. doi:10.1097/00007632-200108150-00003.
  • Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008;17(1):2–19. doi:10.1007/s00586-007-0414-y.
  • W.M.S. Russell RLB. The principles of humane experimental technique. Methuen: London; 1959.
  • Urban JP, Maroudas A. Swelling of the intervertebral disc in vitro. Connect Tissue Res. 1981;9(1):1–10.
  • Bayliss MT, Urban JPG, Johnstone B, Holm S. In vitro method for measuring synthesis rates in the intervertebral disc. J Orthop Res. 1986;4(1):10–17. doi:10.1002/jor.1100040102.
  • Chiba K, Andersson GBJ, Masuda K, Momohara S, Williams JM, Thonar EJ-MA. A new culture system to study the metabolism of the intervertebral disc in vitro. Spine. 1998;23(17):1821–1827. doi:10.1097/00007632-199809010-00002.
  • Risbud MV, Izzo MW, Adams CS, Arnold WW, Hillibrand AS, Vresilovic EJ, Vaccaro AR, Albert TJ, Shapiro IM. An organ culture system for the study of the nucleus pulposus: description of the system and evaluation of the cells. Spine. (Phila Pa 1976). 2003; 28(24):2652–2658. discussion 2658-2659. doi:10.1097/01.BRS.0000099384.58981.C6.
  • Haschtmann D, Stoyanov JV, Ettinger L, Nolte LP, Ferguson SJ. Establishment of a novel intervertebral disc/endplate culture model: analysis of an ex vivo in vitro whole-organ rabbit culture system. Spine. (Phila Pa 1976). 2006; 31(25):2918–2925. doi:10.1097/01.brs.0000247954.69438.ae.
  • Le Maitre CL, Hoyland JA, Freemont AJ. Studies of human intervertebral disc cell function in a constrained in vitro tissue culture system. Spine. 2004;29(11):1187–1195. doi:10.1097/00007632-200406010-00006.
  • Ohshima H, Urban JP, Bergel DH. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res. 1995;13(1):22–29. doi:10.1002/jor.1100130106.
  • Gantenbein B, Grunhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: A feasibility study with ovine caudal discs. Spine. (Phila Pa 1976). 2006; 31(23):2665–2673. doi:10.1097/01.brs.0000244620.15386.df.
  • Lee CR, Iatridis JC, Poveda L, Alini M. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine. (Phila Pa 1976). 2006; 31(5):515–522. doi:10.1097/01.brs.0000201302.59050.72.
  • Junger S, Gantenbein-Ritter B, Lezuo P, Alini M, Ferguson SJ, Ito K. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine. (Phila Pa 1976). 2009; 34(12):1264–1271. doi:10.1097/BRS.0b013e3181a0193d.
  • Illien-Junger S, Gantenbein-Ritter B, Grad S, Lezuo P, Ferguson SJ, Alini M, Ito K. The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine. (Phila Pa 1976). 2010; 35(19):1744–1752. doi:10.1097/BRS.0b013e3181c48019.
  • Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short-term cyclic torsion. Spine. (Phila Pa 1976). 2011; 36(24):2021–2030. doi:10.1097/BRS.0b013e318203aea5.
  • Haglund L, Moir J, Beckman L, Mulligan KR, Jim B, Ouellet JA, Roughley P, Steffen T. Development of a bioreactor for axially loaded intervertebral disc organ culture. Tissue Eng Part C Methods. 2011;17(10):–1011–1019. doi:10.1089/ten.TEC.2011.0025.
  • Paul CP, Schoorl T, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, van Royen BJ, Helder MN, Mullender MG. Dynamic and static overloading induce early degenerative processes in caprine lumbar intervertebral discs. PLoS One. 2013;8(4):e62411. doi:10.1371/journal.pone.0062411.
  • Walter BA, Illien-Jünger S, Nasser PR, Hecht AC, Iatridis JC. Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture. J Biomech. 2014;47(9):2095–2101. doi:10.1016/j.jbiomech.2014.03.015.
  • Beatty AM, Bowden AE, Bridgewater LC. Complex loading whole spinal segment bioreactor design. J Biomech Eng. 2016;138(6):064501. doi:10.1115/1.4032997.
  • Rosenzweig DH, Gawri R, Moir J, Beckman L, Eglin D, Steffen T, Roughley PJ, Ouellet JA, Haglund L. Dynamic loading, matrix maintenance and cell injection therapy of human intervertebral discs cultured in a bioreactor. Eur Cell Mater. 2016;31:26–39.
  • Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp. 2012;60.
  • Gawri R, Mwale F, Ouellet J, Roughley PJ, Steffen T, Antoniou J, Haglund L. Development of an organ culture system for long-term survival of the intact human intervertebral disc. Spine. (Phila Pa 1976). 2011; 36(22):1835–1842. doi:10.1097/BRS.0b013e3181f81314.
  • Li Z, Peroglio M, Alini M, Grad S. Potential and limitations of intervertebral disc endogenous repair. Curr Stem Cell Res Ther. 2015;10(4):329–338.
  • Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, Richards RG, Alini M, Grad S, Li Z. Effect of the ccl5-releasing fibrin gel for intervertebral disc regeneration. Cartilage. 2018;1947603518764263.
  • Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine. (Phila Pa 1976). 2008; 33(6):E166–173. doi:10.1097/BRS.0b013e318166e001.
  • Barbir A, Godburn KE, Michalek AJ, Lai A, Monsey RD, Iatridis JC. Effects of torsion on intervertebral disc gene expression and biomechanics, using a rat tail model. Spine. (Phila Pa 1976). 2011; 36(8):607–614. doi:10.1097/BRS.0b013e3181d9b58b.
  • Pattappa G, Li Z, Peroglio M, Wismer N, Alini M, Grad S. Diversity of intervertebral disc cells: phenotype and function. J Anat. 2012;221(6):480–496. doi:10.1111/j.1469-7580.2012.01521.x.
  • Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical model for human spines? Spine. (Phila Pa 1976). 1997; 22(20):2365–2374. doi:10.1097/00007632-199710150-00009.
  • Michael G, EL M, Omar S, Nizar A, Ovidiu C, Motaz A, John A, Fackson M. Development of a large animal long-term intervertebral disc organ culture model that includes the bony vertebrae for ex vivo studies. Tissue Eng Part C Methods. 2016;22(7):636–643. doi:10.1089/ten.tec.2016.0049.
  • Gawri R, Antoniou J, Ouellet J, Awwad W, Steffen T, Roughley P, Haglund L, Mwale F, Best paper nass. Link-n can stimulate proteoglycan synthesis in the degenerated human intervertebral discs. Eur Cell Mater. 2013; 26:107–119. discussion 119.
  • Mwale F, Wang HT, Roughley P, Antoniou J, Haglund L. Link n and mesenchymal stem cells can induce regeneration of the early degenerate intervertebral disc. Tissue Eng Part A. 2014;20(21–22):2942–2949. doi:10.1089/ten.TEA.2013.0749.
  • Lang G, Liu Y, Geries J, Zhou Z, Kubosch D, Sudkamp N, Richards RG, Alini M, Grad S, Li Z. An intervertebral disc whole organ culture system to investigate proinflammatory and degenerative disc disease condition. J Tissue Eng Regen Med. 2018;12(4):e2051–e2061. doi:10.1002/term.2636.
  • Walsh AJ, Lotz JC. Biological response of the intervertebral disc to dynamic loading. J Biomech. 2004;37(3):329–337. doi:10.1016/s0021-9290(03)00290-2.
  • Korecki CL, MacLean JJ, Iatridis JC. Dynamic compression effects on intervertebral disc mechanics and biology. Spine. (Phila Pa 1976). 2008; 33(13):1403–1409. doi:10.1097/BRS.0b013e318175cae7.
  • Maclean JJ, Lee CR, Alini M, Iatridis JC. Anabolic and catabolic mrna levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res. 2004;22(6):1193–1200. doi:10.1016/j.orthres.2004.04.004.
  • Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC. In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res. 2009;27(9):1235–1242. doi:10.1002/jor.20867.
  • Ariga K, Yonenobu K, Nakase T, Hosono N, Okuda S, Meng W, Tamura Y, Yoshikawa H. Mechanical stress-induced apoptosis of endplate chondrocytes in organ-cultured mouse intervertebral discs: an ex vivo study. Spine. (Phila Pa 1976). 2003; 28(14):1528–1533.
  • Paul CP, Zuiderbaan HA, Zandieh Doulabi B, van der Veen AJ, van de Ven PM, Smit TH, Helder MN, van Royen BJ, Mullender MG. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture. PLoS One. 2012;7(3):e33147. doi:10.1371/journal.pone.0033147.
  • Dudli S, Haschtmann D, Ferguson SJ. Persistent degenerative changes in the intervertebral disc after burst fracture in an in vitro model mimicking physiological post-traumatic conditions. Eur Spine J. 2015;24(9):1901–1908. doi:10.1007/s00586-014-3301-3.
  • Gantenbein B, Illien-Junger S, Chan SC, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors–platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther. 2015;10(4):339–352.
  • Chan SC, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS One. 2013;8(8):e72489. doi:10.1371/journal.pone.0072489.
  • Jim B, Steffen T, Moir J, Roughley P, Haglund L. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. Eur Spine J. 2011;20(8):1244–1254. doi:10.1007/s00586-011-1721-x.
  • Hangai M, Kaneoka K, Kuno S, Hinotsu S, Sakane M, Mamizuka N, Sakai S, Ochiai N. Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J. 2008;8(5):732–740. doi:10.1016/j.spinee.2007.07.392.
  • Kauppila LI. Atherosclerosis and disc degeneration/low-back pain–a systematic review. Eur J Vasc Endovasc Surg. 2009;37(6):661–670. doi:10.1016/j.ejvs.2009.02.006.
  • Bibby SR, Urban JP. Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J. 2004;13(8):695–701. doi:10.1007/s00586-003-0616-x.
  • Bartels K, Grenz A, Eltzschig HK. Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci U S A. 2013;110(46):18351–18352. doi:10.1073/pnas.1318345110.
  • Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (review). Int J Mol Med. 2015;35(4):859–869. doi:10.3892/ijmm.2015.2079.
  • Eltzschig HK. Targeting hypoxia-induced inflammation. Anesthesiology. 2011;114(2):239–242. doi:10.1097/ALN.0b013e3182070c66.
  • Richardson SM, Knowles R, Tyler J, Mobasheri A, Hoyland JA. Expression of glucose transporters glut-1, glut-3, glut-9 and hif-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol. 2008;129(4):503–511. doi:10.1007/s00418-007-0372-9.
  • Wu WP, Jiang JM, Qu DB, Wei QZ, Jiang H. [expression of hypoxia-inducible factor-1alpha and matrix metalloproteinase-2 in degenerative lumbar intervertebral disc]. Nan Fang Yi Ke Da Xue Xue Bao. 2010;30(5):1152–1155.
  • Markway BD, Cho H, Johnstone B. Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes. Arthritis Res Ther. 2013;15(4). doi:10.1186/ar4272.
  • Anderson DE, Markway BD, Bond D, McCarthy HE, Johnstone B. Responses to altered oxygen tension are distinct between human stem cells of high and low chondrogenic capacity. Stem Cell Res Ther. 2016;7(1):154. doi:10.1186/s13287-016-0419-8.
  • Ni L, Liu X, Sochacki KR, Ebraheim M, Fahrenkopf M, Shi Q, Liu J, Yang H. Effects of hypoxia on differentiation from human placenta-derived mesenchymal stem cells to nucleus pulposus-like cells. Spine J. 2014;14(10):2451–2458. doi:10.1016/j.spinee.2014.03.028.
  • Feng G, Li L, Liu H, Song Y, Huang F, Tu C, Shen B, Gong Q, Li T, Liu L, et al. Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3d scaffolds. Osteoarthritis Cartilage. 2013;21(4):582–588. doi:10.1016/j.joca.2013.01.001.
  • Pattappa G, Johnstone B, Zellner J, Docheva D. The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. Int. J. Mol. Sci. 2019;20(3):484.
  • Guehring T, Wilde G, Sumner M, Grunhagen T, GB K, UK T, JP U. Notochordal intervertebral disc cells: sensitivity to nutrient deprivation. Arthritis Rheum. 2009;60(4):1026–1034. doi:10.1002/art.24407.
  • Wuertz K, Godburn K, Iatridis JC. Msc response to ph levels found in degenerating intervertebral discs. Biochem Biophys Res Commun. 2009;379(4):824–829. doi:10.1016/j.bbrc.2008.12.145.
  • Mokhbi Soukane D, Shirazi-Adl A, Urban JPG. Investigation of solute concentrations in a 3d model of intervertebral disc. Eur Spine J. 2009;18(2):254–262. doi:10.1007/s00586-008-0822-7.
  • Ejeskar A, Holm S. Oxygen tension measurements in the intervertebral disc. A methodological and experimental study. Ups J Med Sci. 1979;84(1):83–93. doi:10.3109/03009737909179143.
  • Neidlinger-Wilke C, Mietsch A, Rinkler C, Wilke HJ, Ignatius A, Urban J. Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells. J Orthop Res. 2012;30(1):112–121. doi:10.1002/jor.21481.
  • Huang CY, Gu WY. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J Biomech. 2008;41(6):1184–1196. doi:10.1016/j.jbiomech.2008.02.002.
  • Sadowska A, Kameda T, Krupkova O, Wuertz-Kozak K. Osmosensing, osmosignalling and inflammation: how intervertebral disc cells respond to altered osmolarity. Eur Cell Mater. 2018;36:231–250.
  • Johnson ZI, Shapiro IM, Risbud MV. Extracellular osmolarity regulates matrix homeostasis in the intervertebral disc and articular cartilage: evolving role of tonebp. Matrix Biol. 2014;40:10–16). doi:10.1016/j.matbio.2014.08.014.
  • Vergroesen PA, Emanuel KS, Peeters M, Kingma I, Smit TH. Are axial intervertebral disc biomechanics determined by osmosis? J Biomech. 2018;70:4–9. doi:10.1016/j.jbiomech.2017.04.027.
  • Laudier DM, Purmessur D, Iatridis JC, Bezci SE, O’Connell GD. Osmotic pressure alters time-dependent recovery behavior of the intervertebral disc. J Orthop Res. 2018;43(6):E334–e340.
  • Sivan SS, Wachtel E, Roughley P. Structure, function, aging and turnover of aggrecan in the intervertebral disc. Biochim Biophys Acta. 2014;1840(10):3181–3189. doi:10.1016/j.bbagen.2014.07.013.
  • Wardlaw D. Sciatica caused by disc herniation: why is chymopapain chemonucleolysis denied to our patients? Int J Spine Surg. 2016;10(44). doi:10.14444/3044.
  • Roberts S, Menage J, Sivan S, Urban JP. Bovine explant model of degeneration of the intervertebral disc. BMC Musculoskelet Disord. 2008;9(1):24. doi:10.1186/1471-2474-9-87.
  • Norcross JP, Lester GE, Weinhold P, Dahners LE. An in vivo model of degenerative disc disease. J Orthop Res. 2003;21(1):183–188. doi:10.1016/S0736-0266(02)00098-0.
  • Hoogendoorn RJ, Helder MN, Kroeze RJ, Bank RA, Smit TH, Wuisman PI. Reproducible long-term disc degeneration in a large animal model. Spine. (Phila Pa 1976). 2008; 33(9):949–954. doi:10.1097/BRS.0b013e31816c90f0.
  • Gantenbein B, Frauchiger DA, May RD, Bakirci E, Rohrer U, Grad S. Developing bioreactors to host joint-derived tissues that require mechanical stimulation. In: Reference Module in Biomedical Sciences. Elsevier; 2019. doi:10.1016/B978-0-12-801238-3.65611-8.
  • Imai Y, Okuma M, An HS, Nakagawa K, Yamada M, Muehleman C, Thonar E, Masuda K. Restoration of disc height loss by recombinant human osteogenic protein-1 injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase abc. Spine. (Phila Pa 1976). 2007; 32(11):1197–1205. doi:10.1097/BRS.0b013e3180574d26.
  • Chan SC, Burki A, Bonel HM, Benneker LM, Gantenbein-Ritter B. Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. Spine J. 2013;13(3):273–283. doi:10.1016/j.spinee.2012.12.007.
  • Furtwängler T, Chan SCW, Bahrenberg G, Richards PJ, Gantenbein-Ritter B. Assessment of the matrix degenerative effects of mmp-3, adamts-4, and htra1, injected into a bovine intervertebral disc organ culture model. Spine. 2013;38(22). doi:10.1097/BRS.0b013e31828cb001.
  • Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine. (Phila Pa 1976). 2004; 29(23):2724–2732. doi:10.1097/01.brs.0000146049.52152.da.
  • Curry WH, Pintar FA, Doan NB, Nguyen HS, Eckardt G, Baisden JL, Maiman DJ, Paskoff GR, Shender BS, Stemper BD. Lumbar spine endplate fractures: biomechanical evaluation and clinical considerations through experimental induction of injury. J Orthop Res. 2016;34(6):1084–1091. doi:10.1002/jor.23112.
  • Alkhatib B, Rosenzweig DH, Krock E, Roughley PJ, Beckman L, Steffen T, Weber MH, Ouellet JA, Haglund L. Acute mechanical injury of the human intervertebral disc: link to degeneration and pain. Eur Cell Mater. 2014;28:98–110. discussion 110-111.
  • Yamazaki S, Banes AJ, Weinhold PS, Tsuzaki M, Kawakami M, Minchew JT. Vibratory loading decreases extracellular matrix and matrix metalloproteinase gene expression in rabbit annulus cells. Spine J. 2002;2(6):415–420.
  • Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, Iatridis JC. Complex loading affects intervertebral disc mechanics and biology. Osteoarthritis Cartilage. 2011;19(8):1011–1018. doi:10.1016/j.joca.2011.04.005.
  • Shan Z, Wade KR, Schollum ML, Robertson PA, Thambyah A, Broom ND. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: A mechanical and microstructural analysis part Ii: high rate or ‘surprise’ loading. Eur Spine J. 2017;26(10):2629–2641.
  • Molinos M, Almeida CR, Caldeira J, Cunha C, Gonçalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface. 2015;12(104):20141191. doi:10.1098/rsif.2014.1191.
  • Kazezian Z, Li Z, Alini M, Grad S, Pandit A. Injectable hyaluronic acid down-regulates interferon signaling molecules, igfbp3 and ifit3 in the bovine intervertebral disc. Acta Biomater. 2017;52:118–129. doi:10.1016/j.actbio.2016.12.029.
  • Johnson ZI, Schoepflin ZR, Choi H, Shapiro IM, Risbud MV. Disc in flames: roles of tnf-α and il-1β in intervertebral disc degeneration. Eur Cell Mater. 2015;30:104–116. discussion 116-107.
  • Rajan NE, Bloom O, Maidhof R, Stetson N, Sherry B, Levine M, Chahine NO. Toll-like receptor 4 (tlr4) expression and stimulation in a model of intervertebral disc inflammation and degeneration. Spine. (Phila Pa 1976). 2013; 38(16):1343–1351. doi:10.1097/BRS.0b013e31826b71f4.
  • Klawitter M, Hakozaki M, Kobayashi H, Krupkova O, Quero L, Ospelt C, Gay S, Hausmann O, Liebscher T, Meier U, et al. Expression and regulation of toll-like receptors (tlrs) in human intervertebral disc cells. Eur Spine J. 2014;23(9):1878–1891. doi:10.1007/s00586-014-3442-4.
  • Revell PA, Damien E, Di Silvio L, Gurav N, Longinotti C, Ambrosio L. Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med. 2007;18(2):303–308. doi:10.1007/s10856-006-0693-6.
  • Li Z, Lezuo P, Pattappa G, Collin E, Alini M, Grad S, Peroglio M. Development of an ex vivo cavity model to study repair strategies in loaded intervertebral discs. Eur Spine J. 2016;25(9):2898–2908. doi:10.1007/s00586-016-4542-0.
  • Vadala G, De Strobel F, Bernardini M, Denaro L, D’Avella D, Denaro V. The transpedicular approach for the study of intervertebral disc regeneration strategies: in vivo characterization. Eur Spine J. 2013;22(Suppl 6):S972–978. doi:10.1007/s00586-013-3007-y.
  • Teixeira GQ, Boldt A, Nagl I, Pereira CL, Benz K, Wilke HJ, Ignatius A, Barbosa MA, Goncalves RM, Neidlinger-Wilke C. A degenerative/proinflammatory intervertebral disc organ culture: an ex vivo model for anti-inflammatory drug and cell therapy. Tissue Eng Part C Methods. 2016;22(1):8–19. doi:10.1089/ten.tec.2015.0195.
  • Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10(1):44–56. doi:10.1038/nrrheum.2013.160.
  • Shi J, Pang L, Jiao S. The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture. Biosci Rep. 2018;38(2). doi:10.1042/BSR20180064.
  • Xin L, Zhang C, Zhong F, Fan S, Wang W, Wang Z. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (plga) plugs for annular repair in a rabbit model. Eur J Med Res. 2016;21(7). doi:10.1186/s40001-016-0202-4.
  • Frauchiger DA, Chan SCW, Benneker LM, Gantenbein B. Intervertebral disc damage models in organ culture: A comparison of annulus fibrosus cross-incision versus punch model under complex loading. Eur Spine J. 2018;27(8):1785–1797. doi:10.1007/s00586-018-5638-5.
  • Pirvu T, Blanquer SB, Benneker LM, Grijpma DW, Richards RG, Alini M, Eglin D, Grad S, Li Z. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials. 2015;42:11–19. doi:10.1016/j.biomaterials.2014.11.049.
  • Nachemson A, Lewin T, Maroudas A, Freeman MA. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand. 1970;41(6):589–607. doi:10.3109/17453677008991550.
  • Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res. 1981;8(2):101–119.
  • Benneker LM, Heini PF, Alini M, Anderson SE, Ito K. 2004 young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine. (Phila Pa 1976). 2005; 30(2):167–173. doi:10.1097/01.brs.0000150833.93248.09.
  • Tomaszewski KA, Adamek D, Konopka T, Tomaszewska R, Walocha JA. Endplate calcification and cervical intervertebral disc degeneration: the role of endplate marrow contact channel occlusion. Folia Morphol (Warsz). 2015;74(1):84–92. doi:10.5603/FM.2015.0014.
  • Ohshima H, Urban JP. The effect of lactate and ph on proteoglycan and protein synthesis rates in the intervertebral disc. Spine. (Phila Pa 1976). 1992; 17(9):1079–1082. doi:10.1097/00007632-199209000-00012.
  • Huang YC, Hu Y, Li Z, Luk KDK. Biomaterials for intervertebral disc regeneration: current status and looming challenges. J Tissue Eng Regen Med. 2018. doi:10.1002/term.2750.
  • Stannard JT, Edamura K, Stoker AM, O’Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL. Development of a whole organ culture model for intervertebral disc disease. J Orthop Translat. 2016;5:1–8. doi:10.1016/j.jot.2015.08.002.
  • Naqvi SM, Gansau J, Gibbons D, Buckley CT. In vitro co-culture and ex vivo organ culture assessment of primed and cryopreserved stromal cell microcapsules for intervertebral disc regeneration. Eur Cell Mater. 2019;37:134–152.
  • Peroglio M, Eglin D, Benneker LM, Alini M, Grad S. Thermoreversible hyaluronan-based hydrogel supports in vitro and ex vivo disc-like differentiation of human mesenchymal stem cells. Spine J. 2013;13(11):1627–1639. doi:10.1016/j.spinee.2013.05.029.
  • Rosenzweig DH, Fairag R, Mathieu AP, Li L, Eglin D, D’Este M, Steffen T, Weber MH, Ouellet JA, Haglund L. Thermoreversible hyaluronan-hydrogel and autologous nucleus pulposus cell delivery regenerates human intervertebral discs in an ex vivo, physiological organ culture model. Eur Cell Mater. 2018;36:200–217.
  • Li Z, Lang G, Karfeld-Sulzer LS, Mader KT, Richards RG, Weber FE, Sammon C, Sacks H, Yayon A, Alini M, et al. Heterodimeric bmp-2/7 for nucleus pulposus regeneration-in vitro and ex vivo studies. J Orthop Res. 2017;35(1):51–60. doi:10.1002/jor.23351.
  • Li Z, Lang G, Chen X, Sacks H, Mantzur C, Tropp U, Mader KT, Smallwood TC, Sammon C, Richards RG, et al. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials. 2016;84:196–209.
  • Varma DM, Lin HA, Long RG, Gold GT, Hecht AC, Iatridis JC, Nicoll SB. Thermoresponsive, redox-polymerized cellulosic hydrogels undergo in situ gelation and restore intervertebral disc biomechanics post discectomy. Eur Cell Mater. 2018;35:300–317.
  • Schmocker A, Khoushabi A, Frauchiger DA, Gantenbein B, Schizas C, Moser C, Bourban PE, Pioletti DP. A photopolymerized composite hydrogel and surgical implanting tool for a nucleus pulposus replacement. Biomaterials. 2016;88:110–119. doi:10.1016/j.biomaterials.2016.02.015.
  • Likhitpanichkul M, Dreischarf M, Illien-Junger S, Walter BA, Nukaga T, Long RG, Sakai D, Hecht AC, Iatridis JC. Fibrin-genipin adhesive hydrogel for annulus fibrosus repair: performance evaluation with large animal organ culture, in situ biomechanics, and in vivo degradation tests. Eur Cell Mater. 2014; 28: 25–37. discussion 37-28.
  • Frauchiger DA, May RD, Bakirci E, Tekari A, Chan SCW, Woltje M, Benneker LM, Gantenbein B. Genipin-enhanced fibrin hydrogel and novel silk for intervertebral disc repair in a loaded bovine organ culture model. J Funct Biomater. 2018;9(3). doi:10.3390/jfb9030040.
  • Rickers K, Bendtsen M, Le DQS, Veen AJ, Bunger CE. Biomechanical evaluation of annulus fibrosus repair with scaffold and soft anchors in an ex vivo porcine model. Sicot J. 2018;4:38. doi:10.1051/sicotj/2018020.
  • Colombini A, Lopa S, Ceriani C, Lovati AB, Croiset SJ, Di Giancamillo A, Lombardi G, Banfi G, Moretti M. In vitro characterization and in vivo behavior of human nucleus pulposus and annulus fibrosus cells in clinical-grade fibrin and collagen-enriched fibrin gels. Tissue Eng Part A. 2015;21(3–4):793–802. doi:10.1089/ten.TEA.2014.0279.
  • Likhitpanichkul M, Kim Y, Torre OM, See E, Kazezian Z, Pandit A, Hecht AC, Iatridis JC. Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-tnfalpha drug. Spine J. 2015;15(9):2045–2054. doi:10.1016/j.spinee.2015.04.026.
  • Chan SC, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J. 2011;20(11):1796–1812. doi:10.1007/s00586-011-1827-1.
  • Peroglio M, Douma LS, Caprez TS, Janki M, Benneker LM, Alini M, Grad S. Intervertebral disc response to stem cell treatment is conditioned by disc state and cell carrier: an ex vivo study. J Orthop Translat. 2017;9:43–51. doi:10.1016/j.jot.2017.03.003.
  • Illien-Junger S, Pattappa G, Peroglio M, Benneker LM, Stoddart MJ, Sakai D, Mochida J, Grad S, Alini M. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system. Spine. (Phila Pa 1976). 2012; 37(22):1865–1873. doi:10.1097/BRS.0b013e3182544a8a.
  • Pattappa G, Peroglio M, Sakai D, Mochida J, Benneker LM, Alini M, Grad S. Ccl5/rantes is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur Cell Mater. 2014;27:124–136. discussion 136.
  • Wangler S, Menzel U, Li Z, Ma J, Hoppe S, Benneker LM, Alini M, Grad S, Peroglio M. Cd146/mcam distinguishes stem cell subpopulations with distinct migration and regenerative potential in degenerative intervertebral discs. Osteoarthritis Cartilage. 2019;27:1094–1105. doi:10.1016/j.joca.2019.04.002.
  • Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC, Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration-harnessing advances in tissue engineering. JOR Spine. 2018;1(3):e1029–e1029. doi:10.1002/jsp2.1029.
  • Walter BA, Purmessur D, Likhitpanichkul M, Weinberg A, Cho SK, Qureshi SA, Hecht AC, Iatridis JC. Inflammatory kinetics and efficacy of anti-inflammatory treatments on human nucleus pulposus cells. Spine. (Phila Pa 1976). 2015;40(13):955–963. doi:10.1097/BRS.0000000000000932.
  • Blanquer SB, Grijpma DW, Poot AA. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev. 2015;84:172–187. doi:10.1016/j.addr.2014.10.024.
  • Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials. 2011;32(29):6953–6961. doi:10.1016/j.biomaterials.2011.03.065.
  • Price V, Wells P, Tucci M, Cameron JA, Ragab A, Benghuzzi H. Effects of sustained delivery of igf-1 in a rat degenerative disc model. Biomed Sci Instrum. 2007;43:384–389.
  • Shen J, Zhuo N, Xu S, Song Z, Hu Z, Hao J, Guo X. Resveratrol delivery by ultrasound-mediated nanobubbles targeting nucleus pulposus cells. Nanomedicine (Lond). 2018;13(12):1433–1446. doi:10.2217/nnm-2018-0019.
  • Bedore J, Leask A, Seguin CA. Targeting the extracellular matrix: matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol. 2014;37:124–130. doi:10.1016/j.matbio.2014.05.005.
  • D’Este M, Alini M, Eglin D. Single step synthesis and characterization of thermoresponsive hyaluronan hydrogels. Carbohydr Polym. 2012;90(3):1378–1385. doi:10.1016/j.carbpol.2012.07.007.
  • Mortisen D, Peroglio M, Alini M, Eglin D. Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and raft polymerization for cell and drug therapy. Biomacromolecules. 2010;11(5):1261–1272. doi:10.1021/bm100046n.
  • Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral disk degeneration and repair. Neurosurgery. 2017;80(3s):S46–s54. doi:10.1093/neuros/nyw078.
  • Evans CH, Huard J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol. 2015;11(4):234–242. doi:10.1038/nrrheum.2015.28.
  • Woods BI, Vo N, Sowa G, Kang JD. Gene therapy for intervertebral disk degeneration. Orthop Clin North Am. 2011;42(4):563–574. ix. doi:10.1016/j.ocl.2011.07.002.
  • Bucher C, Gazdhar A, Benneker LM, Geiser T, Gantenbein-Ritter B. Nonviral gene delivery of growth and differentiation factor 5 to human mesenchymal stem cells injected into a 3d bovine intervertebral disc organ culture system. Stem Cells Int. 2013;2013:326828. doi:10.1155/2013/326828.
  • Christoffersson J, van Noort D, Mandenius CF. Developing organ-on-a-chip concepts using bio-mechatronic design methodology. Biofabrication. 2017;9(2):025023. doi:10.1088/1758-5090/aa71ca.
  • Ergir E, Bachmann B, Redl H, Forte G, Ertl P. Small force, big impact: next generation organ-on-a-chip systems incorporating biomechanical cues. Front Physiol. 2018;9:1417. doi:10.3389/fphys.2018.01417.
  • Sun W, Luo Z, Lee J, Kim HJ, Lee K, Tebon P, Feng Y, Dokmeci MR, Sengupta S, Khademhosseini A. Organ-on-a-chip for cancer and immune organs modeling. Adv Healthc Mater. 2019;8(4):e1801363. doi:10.1002/adhm.201801363.
  • Von Aulock S. Is there an end in sight for animal testing? Can organ-on-a-chip replace animal use in safety testing with advanced human-focused approaches? ALTEX. 2019;36(1):142–144. doi:10.14573/altex.1812121.
  • Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, Ferreira L, Khademhosseini A. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl In Vitro Toxicol. 2016;2(2):82–96. doi:10.1089/aivt.2016.0002.
  • Lee JB, Sung JH. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening. Biotechnol J. 2013;8(11):1258–1266. doi:10.1002/biot.201300086.
  • Cho S, Yoon JY. Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol. 2017;45:34–42. doi:10.1016/j.copbio.2016.11.019.
  • Jodat YA, Kang MG, Kiaee K, Kim GJ, Martinez AFH, Rosenkranz A, Bae H, Shin SR. Human-derived organ-on-a-chip for personalized drug development. Curr Pharm Des. 2019;24(45):5471–5486. doi:10.2174/1381612825666190308150055.
  • Kankala RK, Wang SB, Chen AZ. Microengineered organ-on-a-chip platforms towards personalized medicine. Curr Pharm Des. 2019;24(45):5354–5366. doi:10.2174/1381612825666190222143542.
  • Ashammakhi NA, Elzagheid A. Organ-on-a-chip: new tool for personalized medicine. J Craniofac Surg. 2018;29(4):823–824. doi:10.1097/SCS.0000000000004604.
  • Dai J, Xing Y, Xiao L, Li J, Cao R, He Y, Fang H, Periasamy A, Oberhozler J, Jin L, et al. Microfluidic disc-on-a-chip device for mouse intervertebral disc—pitching a next-generation research platform to study disc degeneration. ACS Biomater Sci Eng. 2019;5(4):2041–2051. doi:10.1021/acsbiomaterials.8b01522.
  • Kushioka J, Kaito T, Chijimatsu R, Okada R, Ishiguro H, Bal Z, Kodama J, Takenaka S, Makino T, Sakai Y, et al. A novel and efficient method for culturing mouse nucleus pulposus cells. Spine J. 2019. doi:10.1016/j.spinee.2019.04.005.
  • Fearing BV, Hernandez PA, Setton LA, Chahine NO. Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine. 2018;1(3). doi:10.1002/jsp2.1026.
  • Parolin M, Gawri R, Mwale F, Steffen T, Roughley P, Antoniou J, Jarzem P, Haglund L, Ouellet J. Development of a whole disc organ culture system to study human intervertebral disc. Evid Based Spine Care J. 2010;1(2):67–68. doi:10.1055/s-0028-1100919.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.