588
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Ontogeny informs regeneration: explant models to investigate the role of the extracellular matrix in cartilage tissue assembly and development

, &
Pages 278-291 | Received 04 Aug 2019, Accepted 22 Nov 2019, Published online: 18 Mar 2020

References

  • Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115–2126. doi:10.1016/S0140-6736(11)60243-2
  • McCormick F, Harris JD, Abrams GD, Frank R, Gupta A, Hussey K, Wilson H, Bach B Jr, Cole B. Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthrosc - J Arthrosc Relat Surg. 2014;30:222–226. doi:10.1016/j.arthro.2013.11.001
  • Kremers HM, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ. Prevalence of total hip and knee replacement in the United States. J Bone Jt Surg - Am Vol. 2014;97:1386–1397. doi:10.2106/JBJS.N.01141
  • Hamilton DF, Howie CR, Burnett R, Simpson AHRW, Patton JT. Dealing with the predicted increase in demand for revision total knee arthroplasty. Bone Joint J. 2015;97-B:723–728.doi:10.1302/0301-620X.97B6.35185.
  • Correa D, Lietman SA. Articular cartilage repair: current needs, methods and research directions. Semin Cell Dev Biol. 2017;62:67–77. doi:10.1016/j.semcdb.2016.07.013
  • Lee JK, Responte DJ, Cissell DD, Hu JC, Nolta JA, Athanasiou KA. Clinical translation of stem cells: insight for cartilage therapies. Crit Rev Biotechnol. 2014;34:89–100. doi:10.3109/07388551.2013.823596
  • Zhang W, Ouyang H, Dass CR, Xu J. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res. 2016;4. doi:10.1038/boneres.2015.40
  • Camarero-Espinosa S, Rothen-Rutishauser B, Weder C, Foster EJ. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials. 2016;74:42–52. doi:10.1016/j.biomaterials.2015.09.033
  • Li D, Yin Z, Liu Y, Feng S, Liu Y, Lu F, Xu Y, Min P, Hou M, Li K, He A. Regeneration of trachea graft with cartilage support, vascularization, and epithelization. Acta Biomater. 2019;89:206–216.
  • Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: a systemic review of the scaffold development and tissue engineering. J Biomed Mater Res - Part A. 2017;105:2343–2354. doi:10.1002/jbm.a.36087
  • Malizos KN, Athanasiou KA, Makris EA, Hu JC, Gomoll AH. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2014;11:21–34. doi:10.1038/nrrheum.2014.157
  • Tognana E, Chen F, Padera RF, Leddy HA, Christensen SE, Guilak F, Vunjak-Novakovic G, Freed LE. Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis Cartilage. 2005;13:129–138. doi:10.1016/j.joca.2004.10.015
  • Keeney M, Lai JH, Yang F. Recent progress in cartilage tissue engineering. Curr Opin Biotechnol. 2011;22:734–740. doi:10.1016/j.copbio.2011.04.003
  • Zhu Y, Wu H, Sun S, Zhou T, Wu J, Wan Y. Designed composites for mimicking compressive mechanical properties of articular cartilage matrix. J Mech Behav Biomed Mater. 2014;36:32–46. doi:10.1016/j.jmbbm.2014.04.003
  • Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31:706–721. doi:10.1016/j.biotechadv.2012.11.004
  • Xue J, He A, Zhu Y, Liu Y, Li D, Yin Z, Zhang W, Liu W, Cao Y, Zhou G. Repair of articular cartilage defects with acellular cartilage sheets in a swine model. Biomed Mater. 2018;13:025016.
  • Wang Z, Li Z, Li Z, Wu B, Liu Y, Wu W. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater. 2018;81:129–145. doi:10.1016/j.actbio.2018.10.005
  • Ferguson MWJ, O’Kane S. Scar-free healing: from embryonic mechanism to adult therapeutic intervention. Philos Trans R Soc B Biol Sci. 2004;359:839–850. doi:10.1098/rstb.2004.1475
  • Ribitsch I, Mayer RL, Egerbacher M, Gabner S, Kańduła MM, Rosser J, Haltmayer E, Auer U, Gültekin S, Huber J, Bileck A. Fetal articular cartilage regeneration versus adult fibrocartilaginous repair: secretome proteomics unravels molecular mechanisms in an ovine model. Dis Model Mech. 2018;11:dmm033092. doi:10.1242/dmm.033092
  • Decker RS, Um HB, Dyment NA, Cottingham N, Usami Y, Enomoto-Iwamoto M, Kronenberg MS, Maye P, Rowe DW, Koyama E, Pacifici M. Cell origin, volume and arrangement are drivers of articular cartilage formation, morphogenesis and response to injury in mouse limbs. Dev Biol. 2017;426:56–68. doi:10.1016/j.ydbio.2017.04.006
  • Namba RS, Meuli M, Sullivan KM, Le, AX, Adzick, NS. Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J Bone Jt Surg - Ser A. 1998;80:4–10. doi:10.2106/00004623-199801000-00003
  • Calve S, Simon H-G. Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration. FASEB J. 2012;26:2538–2545. doi:10.1096/fj.11-200162
  • Wuelling M, Vortkamp A. Cartilage explant cultures. Totowa, NJ: Humana Press; 2014. p. 89–97. doi:10.1007/978-1-62703-989-5_7
  • Scotti C, Tonnarelli B, Papadimitropoulos A, Scherberich A, Schaeren S, Schauerte A, Lopez-Rios J, Zeller R, Barbero A, Martin I. Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering. Proc Natl Acad Sci USA. 2010;107:7251–7256. doi:10.1073/pnas.1000302107
  • Kuyinu EL, Narayanan G, Nair LS, Laurencin CT. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:1–27.
  • Bapat S, Hubbard D, Munjal A, Hunter M, Fulzele S. Pros and cons of mouse models for studying osteoarthritis. Clin Transl Med. 2018;7:36. doi:10.1186/s40169-018-0215-4
  • Xu X, Li Z, Cai L, Calve S, Neu CP. Mapping the nonreciprocal micromechanics of individual cells and the surrounding matrix within living tissues. Sci Rep. 2016;6:1–9.
  • Horkay F. Interactions of cartilage extracellular matrix macromolecules. J Polym Sci Part B Polym Phys. 2012;50:1699–1705. doi:10.1002/polb.23191
  • Han L, Grodzinsky AJ, Ortiz C. Nanomechanics of the cartilage extracellular matrix. Annu Rev Mater Res. 2011;41:133–168. doi:10.1146/annurev-matsci-062910-100431
  • Lovard T. Introduction. In: Evered D, Whelan J, editors. Ciba Foundation symposium 143– the biology of hyaluronan. Chichester: John Wiley & Sons, Ltd.; p. 2.
  • Knudson CB, Knudson W. Hyaluronan and CD44: modulators of chondrocyte metabolism. Clin Orthop Relat Res. 2004;427:S152–S162. doi:10.1097/01.blo.0000143804.26638.82
  • Heuijerjans A, Wilson W, Ito K, van Donkelaar CC. The critical size of focal articular cartilage defects is associated with strains in the collagen fibers. Clin Biomech. 2017;50:40–46. doi:10.1016/j.clinbiomech.2017.09.015
  • Clark D, Nakamura M, Miclau T, Marcucio R. Effects of aging on fracture healing. Curr Osteoporos Rep. 2017;15:601–608. doi:10.1007/s11914-017-0413-9
  • Langer R, Vacanti JP. Tissue engineering. Science (80-). 1993;260:920–926. doi:10.1126/science.8493529
  • Montero JA, Hurlé JM. Deconstructing digit chondrogenesis. BioEssays. 2007;29:725–737. doi:10.1002/(ISSN)1521-1878
  • Xu X, Li Z, Leng Y, Neu CP, Calve S. Knockdown of the pericellular matrix molecule perlecan lowers in situ cell and matrix stiffness in developing cartilage. Dev Biol. 2016;418:242–247. doi:10.1016/j.ydbio.2016.08.029
  • Pacifici M, Iwamoto M, Golden EB, Leatherman JL, Lee YS, Chuong CM. Tenascin is associated with articular cartilage development. Dev Dyn. 1993;198:123–134. doi:10.1002/aja.1001980206
  • Matsumoto K, Kamiya N, Suwan K, Atsumi F, Shimizu K, Shinomura T, Yamada Y, Kimata K, Watanabe H. Identification and characterization of versican/PG-M aggregates in cartilage. J Biol Chem. 2006;281:18257–18263. doi:10.1074/jbc.M510330200
  • Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthritis Cartilage. 2007;15:403–413. doi:10.1016/j.joca.2006.09.010
  • Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1:461–468. doi:10.1177/1941738109350438
  • Decker RS, Koyama E, Pacifici M. Articular cartilage: structural and developmental intricacies and questions. Curr Osteoporos Rep. 2015;13:407–414. doi:10.1007/s11914-015-0290-z
  • Hurrell DJ. The vascularisation of cartilage. J Anat. 1934;69:47–61.
  • Blumer MJF, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Ann Anat. 2008;190:305–315. doi:10.1016/j.aanat.2008.02.004
  • Kosher RA, Kulyk WM, Gay SW. Collagen gene expression during limb cartilage differentiation. J Cell Biol. 1986;102:1151–1156. doi:10.1083/jcb.102.4.1151
  • Calve S, Odelberg SJ, Simon H-G. A transitional extracellular matrix instructs cell behavior during muscle regeneration. Dev Biol. 2010;344:259–271. doi:10.1016/j.ydbio.2010.05.007
  • Calve S, Isaac J, Gumucio JP, Mendias CL. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am J Physiol Physiol. 2012;303:C577–C588. doi:10.1152/ajpcell.00057.2012
  • Keane TJ, Horejs CM, Stevens MM. Scarring vs. functional healing: matrix-based strategies to regulate tissue repair. Adv Drug Deliv Rev. 2018;129:407–419. doi:10.1016/j.addr.2018.02.002
  • Nazempour A, VAN WIE Gene BJ. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng. 2016;44:1325–1354. doi:10.1007/s10439-016-1575-9
  • Caldwell KL, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthritis Cartilage. 2015;23:351–362. doi:10.1016/j.joca.2014.11.004
  • Hunziker EB. Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis Cartilage. 2001;9:22–32. doi:10.1053/joca.2000.0346
  • Shapiro F, Koide S, Glimcher M. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Jt Surg. 1993;532–553. doi:10.1007/978-1-4471-5451-8_95
  • Behonick DJ, Werb Z. A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mech Dev. 2003;120:1327–1336. doi:10.1016/j.mod.2003.05.002
  • Sorrell JM, Somoza RA, Caplan AI. Human mesenchymal stem cells induced to differentiate as chondrocytes follow a biphasic pattern of extracellular matrix production †. J Ortho Res. 2018;36:1757–1766. doi:10.1002/jor.23820
  • Anderson DE, Markway BD, Weekes KJ, McCarthy HE, Johnstone B. Physioxia promotes the articular chondrocyte-like phenotype in human chondroprogenitor-derived self-organized tissue. Tissue Eng - Part A. 2018;24:264–274. doi:10.1089/ten.tea.2016.0510
  • Grodzinsky A, Lipshitz H, Glimcher M. Electromechanical properties of articular cartilage during compression and stress relaxation. Nature. 1978;275:448–450. doi:10.1038/275448a0
  • Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 1980;102:73. doi:10.1115/1.3138202
  • Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng. 1991;113:245. doi:10.1115/1.2894880
  • Neu CP, Komvopoulos K, Reddi AH. The interface of functional biotribology and regenerative medicine in synovial joints. Tissue Eng Part B Rev. 2008;14:235–247. doi:10.1089/ten.teb.2008.0047
  • Schniagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res. 1997;15:499–506. doi:10.1002/jor.1100150404
  • Chen AC, Bae WC, Schniagl RM, Sah RL. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech. 2001;34:1–12. doi:10.1016/S0021-9290(00)00170-6
  • Neu CP, Hull ML, Walton JH. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants. J Orthop Res. 2005;23:1390–1398.doi:10.1016/j.orthres.2005.03.022.1100230622.
  • Griebel AJ, Khoshgoftar M, Novak T, van Donkelaar CC, Neu CP. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs. J Biomech. 2014;47:2149–2156. doi:10.1016/j.jbiomech.2013.09.025
  • Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch Biochem Biophys. 2001;395:41–48. doi:10.1006/abbi.2001.2543
  • Jin G, RL S, YS L, Lotz M, Shyy JY, Chien S. Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes. J Orthop Res. 2000;18:899–908. doi:10.1002/(ISSN)1554-527X
  • Nugent GE, Aneloski NM, Schmidt TA, Schumacher BL, Voegtline MS, Sah RL. Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4. Arthritis Rheum. 2006;54:1888–1896. doi:10.1002/(ISSN)1529-0131
  • Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor β signaling. Arthritis Rheum. 2007;56:3706–3714. doi:10.1002/(ISSN)1529-0131
  • Sandy JD, Boynton RE, Flannery CR. Analysis of the catabolism of aggrecan in cartilage explants by quantitation of peptides from the three globular domains. J Biol Chem. 1991;266:8198–8205.
  • Fosang AJ, Tyler JA, Hardingham TE. Effect of interleukin-1 and insulin like growth factor-1 on the release of proteoglycan components and hyaluronan from pig articular cartilage in explant culture. Matrix. 1991;11:17–24. doi:10.1016/S0934-8832(11)80223-4
  • Hardingham TE, Bayliss MT, Rayan V, Noble DP.Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage. Br J Rheumatol. 1992;31(Suppl 1):1–6.
  • Weiss A, von der Mark K, Silbermann M. A tissue culture system supporting cartilage cell differentiation, extracellular mineralization, and subsequent bone formation, using mouse condylar progenitor cells. Cell Differ. 1986;19:103–113. doi:10.1016/0045-6039(86)90067-9
  • De Vries-Van Melle ML, Mandl EW, Kops N, Koevoet WJ, Verhaar JA, van Osch GJ. An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng - Part C Methods. 2012;18:45–53. doi:10.1089/ten.tec.2011.0339
  • Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in fabrication of tissue-engineered cartilage with correct cellular colonization and extracellular matrix assembly. Int J Mol Sci. 2018;19:2700. doi:10.3390/ijms19092700
  • Kim YS, Majid M, Melchiorri AJ, Mikos AG. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering. Bioeng Transl Med. 2019;4:83–95. doi:10.1002/btm2.10110
  • Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–220. doi:10.1002/(ISSN)1097-4636
  • Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 2017;17015:5.
  • Eslahi N, Abdorahim M, Simchi A. Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules. 2016;17:3441–3463. doi:10.1021/acs.biomac.6b01235
  • Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35:530–544. doi:10.1016/j.biotechadv.2017.05.006
  • Deng T, Lv J, Pang J, Liu B, Ke J. Construction of tissue-engineered osteochondral composites and repair of large joint defects in rabbit. J Tissue Eng Regen Med. 2014;8:546–556. doi:10.1002/term.1556
  • Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW. Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater. 2013;9:7236–7247. doi:10.1016/j.actbio.2013.04.003
  • Chen G, Sato T, Tanaka J, Tateishi T. Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng C. 2006;26:118–123. doi:10.1016/j.msec.2005.07.024
  • Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials. 2011;32:4793–4805. doi:10.1016/j.biomaterials.2011.03.041
  • Shirzaei Sani E, Portillo-Lara R, Spencer A, Yu W, Geilich BM, Noshadi I, Webster TJ, Annabi N. Engineering adhesive and antimicrobial hyaluronic acid/elastin-like polypeptide hybrid hydrogels for tissue engineering applications. ACS Biomater Sci Eng. 2018;4:2528–2540. doi:10.1021/acsbiomaterials.8b00408
  • Holland TA, Tabata Y, Mikos AG. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. Journal of Controlled Release. 2005;101:111–125. doi:10.1016/j.jconrel.2004.07.004
  • Rey-Rico A, Madry H, Cucchiarini M. Hydrogel-based controlled delivery systems for articular cartilage repair. Biomed Res Int. 2016;2016. Available from: https://www.hindawi.com/journals/bmri/2016/1215263/abs/
  • Wang T, Lai JH, Yang F. Effects of hydrogel stiffness and extracellular compositions on modulating cartilage regeneration by mixed populations of stem cells and chondrocytes in vivo. Tissue Eng - Part A. 2016;22:1348–1356. doi:10.1089/ten.tea.2016.0306
  • Mabry KM, Lawrence RL, Anseth KS. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials. 2015;49:47–56. doi:10.1016/j.biomaterials.2015.01.047
  • Shi D, Xu X, Ye Y, Song K, Cheng Y, Di J, Hu Q, Li J, Ju H, Jiang Q, Gu Z. Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano. 2016;10:1292–1299. doi:10.1021/acsnano.5b06663
  • Decker RS, Koyama E, Enomoto-Iwamoto M, Maye P, Rowe D, Zhu S, Schultz PG, Pacifici M. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol. 2014;395:255–267. doi:10.1016/j.ydbio.2014.09.011
  • Williamson AK, Chen AC, Sah RL. Compressive properties and function-composition relationships of developing bovine articular cartilage. J Orthop Res. 2001;19:1113–1121. doi:10.1016/S0736-0266(01)00052-3
  • Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol. 2013;94:75–92. doi:10.1111/iep.12011
  • Can T, Faas L, Ashford DA, Dowle A, Thomas J, O’Toole P, Blanco G. Proteomic analysis of laser capture microscopy purified myotendinous junction regions from muscle sections. Proteome Sci. 2014;12:1–11. doi:10.1186/1477-5956-12-25
  • Wilson R, Norris EL, Brachvogel B, Angelucci C, Zivkovic S, Gordon L, Bernardo BC, Stermann J, Sekiguchi K, Gorman JJ, Bateman JF. Changes in the chondrocyte and extracellular matrix proteome during post-natal mouse cartilage development. Mol Cell Proteomics. 2011;11:M111.014159. doi:10.1074/mcp.M111.014159
  • Schiavinato A, Keene DR, Imhof T, Doliana R, Sasaki T, Sengle G. Fibulin-4 deposition requires EMILIN-1 in the extracellular matrix of osteoblasts. Sci Rep. 2017;7. doi:10.1038/s41598-017-05835-7
  • Saleh AM, Wilding KM, Calve S, Bundy BC, Kinzer-Ursem TL. Non-canonical amino acid labeling in proteomics and biotechnology. J Biol Eng. 2019;13. doi:10.1186/s13036-019-0166-3
  • Mcleod CM, Mauck RL. High fidelity visualization of cell-to-cell variation and temporal dynamics in nascent extracellular matrix formation. Sci Rep. 2016;6. doi:10.1038/srep38852
  • Loebel C, Mauck RL, Burdick JA. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat Mater. 2019;18:883–891. doi:10.1038/s41563-019-0307-6
  • Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta - Gen Subj. 2014;1840:2506–2519.
  • Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103:655–663. doi:10.1002/bit.v103:4
  • Melrose J, Smith S, Cake M, Read R, Whitelock J. Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem Cell Biol. 2005;123:561–571. doi:10.1007/s00418-005-0789-y
  • Smith EL, Kanczler JM, Oreffo ROC. A new take on an old story: chick limb organ culture for skeletal niche development and regenerative medicine evaluation. Eur Cell Mater. 2013;26;91–106. discussion 106. doi:10.22203/eCM.v026a07
  • Gabdoulline R, Kaisers W, Gaspar A, Meganathan K, Doss MX, Jagtap S, Hescheler J, Sachinidis A, Schwender H. Differences in the early development of human and mouse embryonic stem cells. PLoS One. 2015;10:e0140803. doi:10.1371/journal.pone.0140803
  • Keane TJ, Badylak SF. The host response to allogeneic and xenogeneic biological scaffold materials. J Tissue Eng Regen Med. 2015;9:504–511. doi:10.1002/term.1874
  • Cheng NC, Estes BT, Young TH, Guilak F. Engineered cartilage using primary chondrocytes cultured in a porous cartilage-derived matrix. Regen Med. 2011;6:81–93. doi:10.2217/rme.10.87
  • Londono R, Badylak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng. 2015;43:577–592. doi:10.1007/s10439-014-1103-8
  • Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316:62–73. doi:10.1016/j.ydbio.2008.01.012
  • Pitsillides AA, Ashhurst DE. A critical evaluation of specific aspects of joint development. Dev Dyn. 2008;237:2284–2294. doi:10.1002/dvdy.v237:9
  • Yin M, Pacifici M. Vascular regression is required for mesenchymal condensation and chondrogenesis in the developing limb. Dev Dyn. 2001;222:522–533. doi:10.1002/(ISSN)1097-0177
  • Johnson K, Zhu S, Tremblay MS, Payette JN, Wang J, Bouchez LC, Meeusen S, Althage A, Cho CY, Wu X, Schultz PG. A stem cell-based approach to cartilage repair. Science (80-). 2012;336:717–721. doi:10.1126/science.1215157
  • Zhu Y, Tan J, Zhu H, Lin G, Yin F, Wang L, Song K, Wang Y, Zhou G, Yi W. Development of kartogenin-conjugated chitosan-hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci. 2017;5:784–791. doi:10.1039/C7BM00001D
  • Kang M-L, Jeong S-Y, Im G-I. Hyaluronic acid hydrogel functionalized with self-assembled micelles of amphiphilic pegylated kartogenin for the treatment of osteoarthritis. Tissue Eng Part A. 2017;23:630–639. doi:10.1089/ten.tea.2016.0524
  • Zheng L, Li D, Wang W, Zhang Q, Zhou X, Liu D, Zhang J, You Z, Zhang J, He C. Bilayered scaffold prepared from a kartogenin-loaded hydrogel and BMP-2-derived peptide-loaded porous nanofibrous scaffold for osteochondral defect repair. ACS Biomater Sci Eng. 2019;5:4564–4573. doi:10.1021/acsbiomaterials.9b00513
  • Mak KK, Kronenberg HM, Chuang P-T, Mackem S, Yang Y. Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development. 2008;135:1947–1956. doi:10.1242/dev.018044
  • Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A. BMPs and Ihh regulate chondrocyte development. Development. 2001;128:4523–4534.
  • Song R-H, Tortorella M, Malfait AM, Alston JT, Yang Z, Arner EC, Griggs DW. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 2007;56:575–585. doi:10.1002/(ISSN)1529-0131
  • Grenier S, Bhargava MM, Torzilli PA. An in vitro model for the pathological degradation of articular cartilage in osteoarthritis. J Biomech. 2014;47:645–652. doi:10.1016/j.jbiomech.2013.11.050
  • Bondeson J, Wainwright S, Hughes C, Caterson B. The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol. 2008;26:139–145.
  • Gilbert SJ, Singhrao SK, Khan IM, Gonzalez LG, Thomson BM, Burdon D, Duance VC, Archer CW. Enhanced tissue integration in vitro can be achieved by inhibiting chondrocyte death at the wound edge. Tissue Eng Part A. 2009;15:1739–1749. doi:10.1089/ten.tea.2008.0361
  • Schwab A, Meeuwsen A, Ehlicke F, Hansmann J, Mulder L, Smits A, Walles H, Kock L. Ex vivo culture platform for assessment of cartilage repair treatment strategies. ALTEX. 2017;34:267–277. doi:10.14573/altex
  • Choi JB, Youn I, Cao L, Leddy HA, Gilchrist CL, Setton LA, Guilak F. Zonal changes in the three-dimensional morphology of the chondron under compression: the relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech. 2007;40:2596–2603. doi:10.1016/j.jbiomech.2007.01.009
  • Johnson CI, Argyle DJ, Clements DN. In vitro models for the study of osteoarthritis. Vet J. 2016;209:40–49. doi:10.1016/j.tvjl.2015.07.011
  • Occhetta P, Mainardi A, Votta E, Vallmajo-Martin Q, Ehrbar M, Martin I, Barbero A, Rasponi M. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat Biomed Eng. 2019;3:545–557. doi:10.1038/s41551-019-0406-3
  • Salinas EY, Hu JC, Athanasiou K. A guide for using mechanical stimulation to enhance tissue-engineered articular cartilage properties. Tissue Eng - Part B Rev. 2018;24:345–358. doi:10.1089/ten.teb.2018.0006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.