307
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comparison of dynamic mechanical properties of dentin between deciduous and permanent teeth

, , , , , , & show all
Pages 402-410 | Received 14 Dec 2019, Accepted 16 Apr 2020, Published online: 30 Apr 2020

References

  • Reznikov N, Shahar R, Weiner S. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone. 2014;59:93–104.doi:10.1016/j.bone.2013.10.023.
  • Su X, Sun K, Cui FZ, Landis WJ. Organization of apatite crystals in human woven bone. Bone. 2003;32:150–162.doi:10.1016/S8756-3282(02)00945-6.
  • Cui FZ, Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J Tissue Eng Regen Med. 2007;1:185–191.doi:10.1002/term.21.
  • Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10:3815–3826.doi:10.1016/j.actbio.2014.05.024.
  • Zarone F, Sorrentino R, Apicella D, Valentino B, Ferrari M, Aversa R, Apicella A. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: a 3d static linear finite elements analysis. Dent Mater. 2006;22:1035–1044.doi:10.1016/j.dental.2005.11.034.
  • Genovese K, Lamberti L, Pappalettere C. Finite element analysis of a new customized composite post system for endodontically treated teeth. J Biomech. 2005;38:2375–2389.doi:10.1016/j.jbiomech.2004.10.009.
  • Mahmoudi M, Saidi AR, Hashemipour MA, Amini P.The use of functionally graded dental crowns to improve biocompatibility: a finite element analysis. Comput Method Biomet. 2018;21(2):161–168.doi:10.1080/10255842.2018.1431219.
  • Torres CP, Miranda Gomes-Silva J, Menezes-Oliveira MAH, Silva Soares LE, Palma-Dibb RG, Borsatto MC. Ft-raman spectroscopy, micro-edxrf spectrometry, and microhardness analysis of the dentin of primary and permanent teeth. Microsc Res Tech. 2018;81:509–514.doi:10.1002/jemt.23005.
  • Borges AFS, Bitar RA, Kantovitzc KR, Correr AB, Martin AA, Puppin-Rontani RM. New perspectives about molecular arrangement of primary and permanent dentin. Appl Surf Sci. 2007;254:1498–1505.doi:10.1016/j.apsusc.2007.07.018.
  • Makuch AM, Skalski KR. Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests. Acta Bioeng Biomech. 2018;20:153–164.
  • Shah FA, Stoica A, Cardemil C, Palmquist A. Multiscale characterization of cortical bone composition, microstructure, and nanomechanical properties in experimentally induced osteoporosis. J Biomed Mater Res A. 2018;106:997–1007.doi:10.1002/jbm.a.36294.
  • Mora-Macias J, Pajares A, Miranda P, Dominguez J, Reina-Romo E. Mechanical characterization via nanoindentation of the woven bone developed during bone transport. J Mech Behav Biomed Mater. 2017;74:236–244.doi:10.1016/j.jmbbm.2017.05.031.
  • Zuo Q, Lu S, Du Z, Friis T, Yao J, Crawford R, Prasadam I, Xiao Y. Characterization of nano-structural and nano-mechanical properties of osteoarthritic subchondral bone. BMC Musculoskel Dis. 2016;17:367.doi:10.1186/s12891-016-1226-1.
  • Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Muller R.Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. R Soc Open Sci. 2017;4(2):160971.doi:10.1098/rsos.160971.
  • Jang AT, Lin JD, Choi RM, Choi EM, Seto ML, Ryder MI, Gansky SA, Curtis DA, Ho SP. Adaptive properties of human cementum and cementum dentin junction with age. J Mech Behav Biomed Mater. 2014;39:184–196.doi:10.1016/j.jmbbm.2014.07.015.
  • Ho SP, Yu B, Yun W, Marshall GW, Ryder MI, Marshall SJ. Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. Acta Biomater. 2009;5:707–718.doi:10.1016/j.actbio.2008.08.013.
  • Ho SP, Goodis H, Balooch M, Nonomura G, Marshall SJ, Marshall G. The effect of sample preparation technique on determination of structure and nanomechanical properties of human cementum hard tissue. Biomaterials. 2004;25:4847–4857.doi:10.1016/j.biomaterials.2003.11.047.
  • Toledano M, Aguilera FS, Cabello I, Toledano-Osorio M, Osorio E, Lopez-Lopez MT, Garcia-Godoy F, Lynch CD, Osorio R. Silver-loaded nanoparticles affect ex-vivo mechanical behavior and mineralization of dentin. Med Oral Patol Oral Cir Bucal. 2019;24:e156–e164.doi:10.4317/medoral.22885.
  • Chen Y, Wang J, Sun J, Mao C, Wang W, Pan H, Tang R, Gu X. Hierarchical structure and mechanical properties of remineralized dentin. J Mech Behav Biomed Mater. 2014;40:297–306.doi:10.1016/j.jmbbm.2014.08.024.
  • Inoue T, Saito M, Yamamoto M, Debari K, Kou K, Nishimura F, Miyazaki T. Comparison of nanohardness between coronal and radicular intertubular dentin. Dent Mater J. 2009;28:295–300.doi:10.4012/dmj.28.295.
  • Angker L, Swain MV, Kilpatrick N. Micro-mechanical characterisation of the properties of primary tooth dentine. J Dent. 2003;31:261–267.doi:10.1016/S0300-5712(03)00045-9.
  • Habelitz S, Marshall SJ, Marshall GW Jr., Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol. 2001;46:173–183.doi:10.1016/S0003-9969(00)00089-3.
  • Ge J, Cui FZ, Wang XM, Feng HL.Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials. 2005;26(16):3333–3339.doi:10.1016/j.biomaterials.2004.07.059.
  • Lippert F, Parker DM, Jandt KD. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by afm and nanoindentation. J Colloid Interface Sci. 2004;280:442–448.doi:10.1016/j.jcis.2004.08.016.
  • Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol. 2002;47:281–291.doi:10.1016/S0003-9969(02)00006-7.
  • Mahoney E, Holt A, Swain M, Kilpatrick N. The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent. 2000;28:589–594.doi:10.1016/S0300-5712(00)00043-9.
  • Angker L, Swain MV. Nanoindentation: application to dental hard tissue investigations. J Mater Res. 2006;21:1893–1905.doi:10.1557/jmr.2006.0257.
  • Hosoya Y, Marshall GW. The nano-hardness and elastic modulus of sound deciduous canine dentin and young premolar dentin–preliminary study. J Mater Sci Mater Med. 2005;16:1–8.doi:10.1007/s10856-005-6439-z.
  • Kinney JH, Balooch M, Marshall SJ, Marshall GW Jr., Weihs TP. Hardness and young’s modulus of human peritubular and intertubular dentine. Arch Oral Biol. 1996;41:9–13.doi:10.1016/0003-9969(95)00109-3.
  • Ryou H, Romberg E, Pashley DH, Tay FR, Arola D. Importance of age on the dynamic mechanical behavior of intertubular and peritubular dentin. J Mech Behav Biomed Mater. 2015;42:229–242.doi:10.1016/j.jmbbm.2014.11.021.
  • Ryou H, Romberg E, Pashley DH, Tay FR, Arola D. Nanoscopic dynamic mechanical properties of intertubular and peritubular dentin. J Mech Behav Biomed Mater. 2012;7:3–16.doi:10.1016/j.jmbbm.2011.08.010.
  • Habelitz S, Marshall GW Jr., Balooch M, Marshall SJ.Nanoindentation and storage of teeth. J Biomech. 2002;35(7):995–998.doi:10.1016/S0021-9290(02)00039-8.
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583.doi:10.1557/JMR.1992.1564.
  • Pashley DH, Tay FR, Carvalho RM, Rueggeberg FA, Agee KA, Carrilho M, Donnelly A, Garcia-Godoy F. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am J Dent. 2007;20:7–20.
  • Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, Marshall GW Jr. Biomechanical perspective on the remineralization of dentin. Caries Res. 2009;43:70–77.doi:10.1159/000201593.
  • Brauer DS, Hilton JF, Marshall GW, Marshall SJ. Nano- and micromechanical properties of dentine: investigation of differences with tooth side. J Biomech. 2011;44:1626–1629.doi:10.1016/j.jbiomech.2011.03.004.
  • Bertassoni LE, Swain MV.Influence of hydration on nanoindentation induced energy expenditure of dentin. J Biomech. 2012;45(9):1679–1683.doi:10.1016/j.jbiomech.2012.03.021.
  • Poolthong S, Swain MV, Sumii T, Mori T. Effect of tubule orientation on some mechanical properties of dentine. J Dent Res. 1998;77:847.
  • Pongprueksa P, Senawongse P, Vongphan N. Effect of dentinal tubule orientation on the modulus of elasticity of resin-infiltrated demineralized dentin. Dent Mater J. 2014;33:54–58.doi:10.4012/dmj.2013-199.
  • Po JMC, Kieser JA, Gallo LM, Tesenyi AJ, Herbison P, Farella M.Time-frequency analysis of chewing activity in the natural environment. J Dent Res. 2011;90(10):1206–1210.doi:10.1177/0022034511416669.
  • Kijak E, Margielewicz J, Lietz-Kijak D, Wilemska-Kucharzewska K, Kucharzewski M, Sliwinski Z. Model identification of stomatognathic muscle system activity during mastication. Exp Ther Med. 2017;13:135–145.doi:10.3892/etm.2016.3921.
  • Smith A, Denny M. High-frequency oscillations as indicators of neural control mechanisms in human respiration, mastication, and speech. J Neurophysiol. 1990;63:745–758.doi:10.1152/jn.1990.63.4.745.
  • Rees JS, Jacobsen PH, Hickman J.The elastic modulus of dentine determined by static and dynamic methods. Clin Mater. 1994;17(1):11–15.doi:10.1016/0267-6605(94)90042-6.
  • Wang S, Zhang D, Hu N, Zhang J. Effect of stress ratio and loading frequency on the corrosion fatigue behavior of smooth steel wire in different solutions. Materials. 2016;9:750.doi:10.3390/ma9090750.
  • Sirimamilla A, Rimnac CM. Crack initiation from a clinically relevant notch in a highly-crosslinked uhmwpe subjected to static and cyclic loading. J Mech Behav Biomed Mater. 2019;91:366–372.doi:10.1016/j.jmbbm.2018.12.032.
  • Kruzic JJ, Nalla RK, Kinney JH, Ritchie RO. Mechanistic aspects of in vitro fatigue-crack growth in dentin. Biomaterials. 2005;26:1195–1204.doi:10.1016/j.biomaterials.2004.04.051.
  • Nalla RK, Imbeni V, Kinney JH, Staninec M, Marshall SJ, Ritchie RO. In vitro fatigue behavior of human dentin with implications for life prediction. J Biomed Mater Res A. 2003;66:10–20.doi:10.1002/jbm.a.10553.
  • Porter AE, Nalla RK, Minor A, Jinschek JR, Kisielowski C, Radmilovic V, Kinney JH, Tomsia AP, Ritchie RO. A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials. 2005;26:7650–7660.doi:10.1016/j.biomaterials.2005.05.059.
  • Kinney JH, Nalla RK, Pople JA, Breunig TM, Ritchie RO.Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials. 2005;26(16):3363–3376.doi:10.1016/j.biomaterials.2004.09.004.
  • Krajewski A, Mazzocchi M, Buldini PL, Ravaglioli A, Tinti A, Taddei P, Fagnano C. Synthesis of carbonated hydroxyapatites: efficiency of the substitution and critical evaluation of analytical methods. J Mol Struct. 2005;744:221–228.doi:10.1016/j.molstruc.2004.10.044.
  • Vignoles M, Bonel G, Holcomb DW, Young RA.Influence of preparation conditions on the composition of type b carbonated hydroxyapatite and on the localization of the carbonate ions. Calcif Tissue Int. 1988;43(1):33–40.doi:10.1007/BF02555165.
  • Leventouri T, Antonakos A, Kyriacou A, Venturelli R, Liarokapis E, Perdikatsis V. Crystal structure studies of human dental apatite as a function of age. Int J Biomater. 2009;2009:698547.doi:10.1155/2009/698547.
  • Madupalli H, Pavan B, Tecklenburg MMJ. Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in a and b sites of apatite. J Solid State Chem. 2017;255:27–35.doi:10.1016/j.jssc.2017.07.025.
  • Miura J, Nishikawa K, Kubo M, Fukushima S, Hashimoto M, Takeshige F, Araki T. Accumulation of advanced glycation end-products in human dentine. Arch Oral Biol. 2014;59:119–124.doi:10.1016/j.archoralbio.2013.10.012.
  • Walters C, Eyre DR.Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age. Calcif Tissue Int. 1983;35(1):401–405.doi:10.1007/BF02405067.
  • Martin-de Las Heras S, Valenzuela A, Villanueva E. Deoxypyridinoline crosslinks in human dentin and estimation of age. Int J Legal Med. 1999;112:222–226.doi:10.1007/s004140050240.
  • Acil Y, Brinckmann J, Notbohm H, Muller PK, Batge B. Changes with age in the urinary excretion of hydroxylysylpyridinoline (hp) and lysylpyridinoline (lp). Scand J Clin Lab Invest. 1996;56:275–283.doi:10.3109/00365519609088617.
  • Buehler MJ.Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. 2007;18(29):295102.doi:10.1088/0957-4484/18/29/295102.
  • Pires CW, Soldera EB, Bonzanini LIL, Lenzi TL, Soares FZM, Montagner AF, Rocha RD.Is adhesive bond strength similar in primary and permanent teeth? A systematic review and meta-analysis. J Adhes Dent. 2018;20(2):87–97.doi:10.3290/j.jad.a40296.
  • Cheong J, Chiam S, King NM, Anthonappa RP. Pulp chamber analysis of primary molars using micro-computed tomography: preliminary findings. J Clin Pediatr Dent. 2019;43:382–387.doi:10.17796/1053-4625-43.6.4.
  • Amano M, Agematsu H, Abe S, Usami A, Matsunaga S, Suto K, Ide Y. Three-dimensional analysis of pulp chambers in maxillary second deciduous molars. J Dent. 2006;34:503–508.doi:10.1016/j.jdent.2005.12.001.
  • Oyen M, Taylor D.Special issue on nanoindentation of biological materials. J Mech Behav Biomed Mater. 2009;2(4):311.doi:10.1016/j.jmbbm.2009.04.001.
  • Odegard GM, Gates T, Herring HM. Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp Mech. 2005;45:130–136.doi:10.1007/BF02428185.
  • Kruzic JJ, Ritchie RO.Fatigue of mineralized tissues: cortical bone and dentin. J Mech Behav Biomed Mater. 2008;1(1):3–17.doi:10.1016/j.jmbbm.2007.04.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.