258
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Regenerative rehabilitation of catastrophic extremity injury in military conflicts and a review of recent developmental efforts

&
Pages 83-98 | Received 01 May 2020, Accepted 26 May 2020, Published online: 17 Jun 2020

References

  • Kotwal RS, Howard JT, Orman JA, Tarpey BW, Bailey JA, Champion HR, Mabry RL, Holcomb JB, Gross KR. The effect of a golden hour policy on the morbidity and mortality of combat casualties. JAMA Surg. 2016;151(1):15–24. doi:10.1001/jamasurg.2015.3104
  • Howard JT, Kotwal RS, Santos-Lazada AR, Martin MJ, Stockinger ZT. Reexamination of a battlefield trauma golden hour policy. J Trauma Acute Care Surg. 2018;84(1):11–18. doi:10.1097/TA.0000000000001727
  • Kaafarani HMA, Velmahos GC. Damage control resuscitation in trauma. Scand J Surg: SJS: Off Organ Finnish Surg Soc Scand Surg Soc. 2014;103(2):81–88. doi:10.1177/1457496914524388
  • Vertrees A, Fox CJ, Quan RW, Cox MW, Adams ED, Gillespie DL. The use of prosthetic grafts in complex military vascular trauma: a limb salvage strategy for patients with severely limited autologous conduit. The Journal of Trauma: Injury, Infection, and Critical Care. 2009;66(4):980–983. doi:10.1097/TA.0b013e31819c59ac
  • Valerio IL, Sabino JM, Dearth CL. Plastic Surgery Challenges in war wounded II: regenerative Medicine. Adv Wound Care. 2016;5(9):412–419. doi:10.1089/wound.2015.0655
  • Owens JG, Blair JA, Patzkowski JC, Blanck RV, Hsu JR, Consortium STR. others. Return to running and sports participation after limb salvage. J Trauma Acute Care Surg. 2011;71(1):S120–S124. doi:10.1097/TA.0b013e3182219225.
  • Stinner DJ, Burns TC, Kirk KL, Scoville CR, Ficke JR, Hsu JR. Late Amputation Study Team. Prevalence of late amputations during the current conflicts in Afghanistan and Iraq. Mil Med. 2010;175(12):1027–1029. doi:10.7205/milmed-d-10-00102
  • Stinner DJ. Improving Outcomes Following Extremity Trauma: the need for a multidisciplinary approach. Mil Med. 2016;181(S4):26–29. doi:10.7205/MILMED-D-15-00511
  • Kumnig M, Jowsey-Gregoire SG. Psychological and psychosocial aspects of limb transplantation. In: Sher Y, Maldonado JR, editors. Psychosocial care of end-stage organ disease and transplant patients. cham. Springer International Publishing; 2019. p. 365–376.
  • Landin L, Bonastre J, Casado‐Sanchez C, Diez J, Ninkovic M, Lanzetta M, Benedel M, Schneeberger S, Hautz T, Lovic A, et al. Outcomes with respect to disabilities of the upper limb after hand allograft transplantation: a systematic review. Transplant Int. 2012;25(4):424–432. doi:10.1111/j.1432-2277.2012.01433.x.
  • Gopura RARC, Bandara DSV, Kiguchi K, Mann GKI. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Rob Auton Syst. 2016;75:203–220. doi:10.1016/j.robot.2015.10.001.
  • Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG, Guglielmelli E, Zollo L. Literature review on needs of upper limb prosthesis users. Front Neurosci. 2016;10: doi:10.3389/fnins.2016.00209.
  • Smail LC, Neal C, Wilkins C, Packham TL. Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review. Disabil Rehabil Assist Technol. 2020Mar;19: 1–10. doi:10.1080/17483107.2020.1738567.
  • Keenan S, Riesberg JC. Prolonged Field Care: beyond the “Golden Hour. Wilderness Environ Med. 2017;28(2, Supplement):S135–S139. (Tactical Combat Casualty Care: Transitioning Battlefield Lessons Learned to Other Austere Environments). doi:10.1016/j.wem.2017.02.001.
  • DeSoucy E, Shackelford S, DuBose JJ, Zweben S, Rush SC, Kotwal RS, Montgomery HR, Keenan S. Review of 54 cases of prolonged field care. J Spec Oper Med: Peer Rev J SOF Med Prof. 2017;17(1):121–129.
  • Becker R, Selden G. The body electric: electromagnetism and the foundation of life. Harper Collins; 1998.
  • Levin M, Selberg J, Rolandi M. Endogenous bioelectrics in development, cancer, and regeneration: drugs and bioelectronic devices as electroceuticals for regenerative medicine. iScience. 2019;22:519–533. doi:10.1016/j.isci.2019.11.023.
  • Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. 2015. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 5(1):18353. doi:10.1038/srep18353
  • Becker RO, Spadaro JA. Electrical stimulation of partial limb regeneration in mammals. Bull N Y Acad Med. 1972;48(4):627–641.
  • Mitchell SL, Hayda R, Chen AT, Carlini AR, Ficke JR, MacKenzie EJ. The Military Extremity Trauma Amputation/Limb Salvage (METALS) Study: outcomes of amputation compared with limb salvage following major upper-extremity trauma. JBJS. 2019;101(16):1470–1478. doi:10.2106/JBJS.18.00970
  • Grogan BF, Hsu JR, Consortium STR. others. Volumetric muscle loss. J Am Acad Orthop Surgeons. 2011;19:S35–S37. doi:10.5435/00124635-201102001-00007.
  • Lepper C, Partridge TA, Fan C-M. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development. 2011;138(17):3639–3646. doi:10.1242/dev.067595.
  • Gulati AK. Basement membrane component changes in skeletal muscle transplants undergoing regeneration or rejection. J Cell Biochem. 1985;27(4):337–346. doi:10.1002/jcb.240270404.
  • Caldwell CJ, Mattey DL, Weller RO. Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol Appl Neurobiol. 1990;16(3):225–238. doi:10.1111/j.1365-2990.1990.tb01159.x.
  • Rivera JC, Corona BT. Muscle-related disability following combat injury increases with time. US Army Med Dep J. 2016;30–35.
  • Rivera C. Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev. 2015;52(7):785.
  • Corona BT, Wenke JC, Ward CL. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs. 2016;202(3–4):180–188. doi:10.1159/000443925.
  • Owens BD, Kragh JF Jr, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in operation Iraqi freedom and operation enduring freedom. J Orthop Trauma. 2007;21(4):254–257. doi:10.1097/BOT.0b013e31802f78fb.
  • Center AFHS, others. Medical evacuations from operation Iraqi freedom/operation new dawn, active and reserve components. US Armed Forces. 2003;2011:18–21.
  • Armed Forces Health Surveillance Center (AFHSC). Medical evacuations from afghanistan during operation enduring freedom, active and reserve components, u.s. armed forces, 7 october 2001-31 december 2012. MSMR. 2013;20(6):2–8.
  • Belmont PJ Jr, McCriskin BJ, Hsiao MS, Burks R, Nelson KJ, Schoenfeld AJ. The nature and incidence of musculoskeletal combat wounds in iraq and afghanistan (2005–2009). J Orthop Trauma. 2013;27(5):e107–e113. doi:10.1097/BOT.0b013e3182703188.
  • Aurora A, Roe JL, Corona BT, Walters TJ. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials. 2015;67:393–407. doi:10.1016/j.biomaterials.2015.07.040.
  • MacKenzie EJ, Bosse MJ. Factors influencing outcome following limb-threatening lower limb trauma: lessons learned from the lower extremity assessment project (LEAP). J Am Acad Orthop Surgeons. 2006;14(10):S205–S210. doi:10.5435/00124635-200600001-00044.
  • Court-Brown CM, Bugler KE, Clement ND, Duckworth AD, McQueen MM. The epidemiology of open fractures in adults. A 15-year Rev Injury. 2012;43(6):891–897.
  • Bosse MJ, MacKenzie EJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, Sanders RW, Jones AL, McAndrew MP, Patterson BM, McCarthy ML, Travison TG, Castillo RC. An analysis of outcomes of reconstruction or amputation after leg-threatening injuries. N Engl J Med. 2002;347(24):1924–1931. doi:10.1056/NEJMoa012604.
  • Casey K, Demers P, Deben S, Nelles ME, Weiss JS. Outcomes after long-term follow-up of combat-related extremity injuries in a multidisciplinary limb salvage clinic. Ann Vasc Surg. 2015;29(3):496–501. doi:10.1016/j.avsg.2014.09.035
  • Naumenko L, Yu L, Ipatov A, Zub T, Mamatyev A. State of disability due to upper extremity traumas in Ukraine in 2017. TRAUMA. 2018;19(4):9–14. doi:10.22141/1608-1706.4.19.2018.142100.
  • Duramaz A, Bilgili MG, Bayram B, Ziroğlu N, Bayrak A, Avkan MC. Orthopedic trauma surgery and hospital cost analysis in refugees; the effect of the Syrian civil War. Int Orthop. 2017;41(5):877–884. doi:10.1007/s00264-016-3378-x
  • Matsumura Y, Matsumoto J, Kondo H, Idoguchi K, Ishida T, Kon Y, Tomita K, Ishida K, Hirose T, Umakoshi K, Funabiki T. Fewer REBOA complications with smaller devices and partial occlusion: evidence from a multicentre registry in Japan. Emergency Med J. 2017;34(12):793. doi:10.1136/emermed-2016-206383
  • Pasley JD, Teeter WA, Gamble WB, Wasick P, Romagnoli AN, Pasley AM, Scalea TM, Brenner ML. bringing resuscitative endovascular balloon occlusion of the aorta (REBOA) closer to the point of injury. J Spec Oper Med: Peer Rev J SOF Med Prof. 2018;18(1):33–36.
  • Peng HT. Hemostatic agents for prehospital hemorrhage control: a narrative review. Mil Med Res. 2020;7(1):13. doi:10.1186/s40779-020-00241-z
  • Chang JC, Holloway BC, Zamisch M, Hepburn MJ, Ling GSF. ResQFoam for the Treatment of non-compressible hemorrhage on the front line. Mil Med. 2015;180(9):932–933. doi:10.7205/MILMED-D-15-00049
  • Rago AP, Sharma U, Sims K, King DR. Conceptualized use of self-expanding foam to rescue special operators from abdominal exsanguination: percutaneous damage control for the forward deployed. J Spec Oper Med: Peer Rev J SOF Med Prof. 2015;15(3):39–45.
  • Salvatore G, Domenica A, Maria-Michela C, Daniela G, Albertino B, Herbert M, Giovanni S, Letteria M, Alfio B, Rolando M, Adamo EB, Venuti FS, Squadrito F. Efferent vagal fibre stimulation blunts nuclear factor-κb activation and protects against hypovolemic hemorrhagic shock. Circulation. 2003;107(8):1189–1194. doi:10.1161/01.CIR.0000050627.90734.ED
  • Levy G, Fishman JE, Xu D, Chandler BTJ, Feketova E, Dong W, Qin Y, Alli V, Ulloa L, Deitch EA. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock (Augusta, Ga). 2013;39(1):39–44. doi:10.1097/SHK.0b013e31827b450d
  • Huston JM, Fritz JR. The inflammatory reflex and neural tourniquet: harnessing the healing power of the vagus nerve. Bioelectron Med. 2017;1(1):29–38. doi:10.2217/bem-2017-0002
  • Modarai B, Patel AS. PLX-PAD treatment of critical limb ischaemia: a clinically effective cell therapy at long last? Eur J Vasc Endovasc Surg: Off J Eur Soc Vasc Surg. 2019;57(4):546. doi:10.1016/j.ejvs.2019.02.004
  • Winkler T, Perka C, von Roth P, Agres AN, Plage H, Preininger B, Pumberger M, Geissler S, Hagai EL, Ofir R, Pinzur L, Eyal E, Stoltenburg-Didinger G, Meisel C, Consentius C, Streitz M, Reinke P, Duda GN, Volk H-D. Immunomodulatory placental-expanded, mesenchymal stromal cells improve muscle function following hip arthroplasty. J Cachexia Sarcopenia Muscle. 2018;9(5):880–897. doi:10.1002/jcsm.12316
  • Hu B, Weng Y, Xia X-H, Liang X-J, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med. 2019;21(7):e3097. doi:10.1002/jgm.3097
  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee -S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids. 2017;8:132–143. doi:10.1016/j.omtn.2017.06.005.
  • Billin AN, Bantscheff M, Drewes G, Ghidelli-Disse S, Holt JA, Kramer HF, McDougal AJ, Smalley TL, Wells CI, Zuercher WJ, et al. Discovery of novel small molecules that activate satellite cell proliferation and enhance repair of damaged muscle. ACS Chem Biol. 2016;11(2):518–529. doi:10.1021/acschembio.5b00772.
  • Mathews J, Levin M. The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Curr Opin Biotechnol. 2018;52:134–144. doi:10.1016/j.copbio.2018.03.008.
  • Sundelacruz S, Li C, Choi YJ, Levin M, Kaplan DL. Bioelectric modulation of wound healing in a 3D in vitro model of tissue-engineered bone. Biomaterials. 2013;34(28):6695–6705. doi:10.1016/j.biomaterials.2013.05.040
  • Narayan SK, Arumugam M, Chittoria R. Outcome of human peripheral nerve repair interventions using conduits: a systematic review. J Neurol Sci. 2019;396:18–24. doi:10.1016/j.jns.2018.10.012.
  • Fu SY, Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience. 1995;15(5):3886–3895.
  • Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014;2014:1–13.
  • Tuffaha SH, Budihardjo JD, Sarhane KA, Khusheim M, Song D, Broyles JM, Salvatori R, Means KR, Higgins JP, Shores JT, Cooney DS, Hoke A, Lee WPA, Brandacher G. Growth hormone therapy accelerates axonal regeneration, promotes motor reinnervation, and reduces muscle atrophy following peripheral nerve injury. Plast Reconstr Surg. 2016;137(6):1771–1780. doi:10.1097/PRS.0000000000002188
  • Noble M, Tseng K-C-C, Li H, Elfar JC. 4-Aminopyridine as a single agent diagnostic and treatment for severe nerve crush injury. Mil Med. 2019;184(Suppl 1):379–385. doi:10.1093/milmed/usy399
  • Paskal AM, Paskal W, Pietruski P, Wlodarski PK. 2019. Polyethylene glycol: the future of posttraumatic nerve repair? Systemic review. Int J Mol Sci. 20(6):6. doi:10.3390/ijms20061478
  • Miyachi H, Shoji T, Miyamoto S, Shinoka T. Chapter 58 - Engineering of Large Diameter Vessels. In: Atala A, Lanza R, Mikos AG, Nerem R, editors. Principles of regenerative medicine (Third Edition). Boston:Academic Press, 2019: 1029–1040. http://www.sciencedirect.com/science/article/pii/B9780128098806000588. doi:10.1016/B978-0-12-809880-6.00058-8
  • Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016;387:2026–2034.
  • Morrison JJ, J M, DuBose JJ, Scalea TM, Lawson JH, Rasmussen TE. Clinical implementation of the Humacyte human acellular vessel: implications for military and civilian trauma care. J Trauma Acute Care Surg. 2019;87(1SSuppl 1):S44–S47. doi:10.1097/TA.0000000000002350
  • DuBose JJ, Savage SA, Fabian TC, Menaker J, Scalea T, Holcomb JB, Skarupa D, Poulin N, Chourliaras K, Inaba K, Rasmussen TE. The american association for the surgery of trauma prospective observational vascular injury treatment (PROOVIT) registry: multicenter data on modern vascular injury diagnosis, management, and outcomes. J Trauma Acute Care Surg. 2015;78(2):215–223. doi:10.1097/TA.0000000000000520.
  • Skovrind I, Harvald EB, Juul Belling H, Jørgensen CD, Lindholt JS, Andersen DC. Concise review: patency of small-diameter tissue-engineered vascular grafts: a meta-analysis of preclinical trials. Stem Cells Transl Med. 2019;8(7):671–680. doi:10.1002/sctm.18-0287
  • Costamagna D, Berardi E, Ceccarelli G, Sampaolesi M. Adult stem cells and skeletal muscle regeneration. Curr Gene Ther. 2015;15(4):348–363. doi:10.2174/1566523215666150630121024
  • Bentzinger CF, Wang YX, von Maltzahn J, Rudnicki MA. The emerging biology of muscle stem cells: implications for cell-based therapies. BioEssays: News Rev Mol, Cell Dev Biol. 2013;35(3):231–241. doi:10.1002/bies.201200063
  • Garg K, Ward CL, Hurtgen BJ, Wilken JM, Stinner DJ, Wenke JC, Owens JG, Corona BT. Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J Orthop Res. 2015;33(1):40–46. doi:10.1002/jor.22730.
  • Chuang D-C-C. Free tissue transfer for the treatment of facial paralysis. Facial Plast Surg. 2008;24(2):194–203. doi:10.1055/s-2008-1075834.
  • Vekris MD, Beris AE, Lykissas MG, Korompilias AV, Vekris AD, Soucacos PN. Restoration of elbow function in severe brachial plexus paralysis via muscle transfers. Injury. 2008;39(3):15–22. doi:10.1016/j.injury.2008.06.008.
  • Ward CL, Ji L, Corona BT. An autologous muscle tissue expansion approach for the treatment of volumetric muscle loss. Biores Open Access. 2015;4(1):198–208. doi:10.1089/biores.2015.0009.
  • Corona BT, Garg K, Ward CL, McDaniel JS, Walters TJ, Rathbone CR. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am J Physiol-Cell Physiol. 2013;305(7):C761–C775. doi:10.1152/ajpcell.00189.2013.
  • Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration - zotero://attachment/5/. [accessed 2017 Jan 24]. zotero://attachment/5/
  • Garry DJ, Garry MG. Interspecies Chimeras and the Generation of Humanized Organs. Circ Res. 2019;124(1):23–25. doi:10.1161/CIRCRESAHA.118.314189
  • Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MC-J, Danczyk G, Dutton JR, Hackett PB, Hu W-S, Li L, Lu W-C, Miller ZD, O’Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. Interspecies organogenesis for human transplantation. Cell Transplant. 2019;28(9–10):1091–1105. doi:10.1177/0963689719845351
  • Garry DJ, Caplan AL, Garry MG. Chimeric humanized vasculature and blood: the intersection of science and ethics. Stem Cell Reports. 2020;14(4):538–540. doi:10.1016/j.stemcr.2020.03.016
  • Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A. 2013;20(3–4):705–715. doi:10.1089/ten.TEA.2012.0761.
  • Dziki J, Badylak SF, Yabroudi M, Sciari B, Ambrosio F, Stearns K, Turner NJ, Wyse A, Boninger M, Brown E, Rubin JP. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regener Med. 2016;21(1):16008. doi:10.1038/npjregenmed.2016.8.
  • Greising SM, Corona BT, McGann C, Frankum JK, Warren GL. Therapeutic approaches for volumetric muscle loss injury: a systematic review and meta-analysis. Tissue Eng Part B Rev. 2019;25(6):510–525. doi:10.1089/ten.TEB.2019.0207
  • Westman AM, Dyer SE, Remer JD, Hu X, Christ GJ, Blemker SS. A coupled framework of in situ and in silico analysis reveals the role of lateral force transmission in force production in volumetric muscle loss injuries. J Biomech. 2019;85:118–125. doi:10.1016/j.jbiomech.2019.01.025.
  • Dienes JA, Hu X, Janson KD, Slater C, Dooley EA, Christ GJ, Russell SD. Analysis and modeling of rat gait biomechanical deficits in response to volumetric muscle loss injury. Front Bioeng Biotechnol. 2019;7:146. doi:10.3389/fbioe.2019.00146.
  • Mintz EL, Passipieri JA, Franklin IR, Toscano VM, Afferton EC, Sharma PR, Christ GJ. Long-Term evaluation of functional outcomes following rat volumetric muscle loss injury and repair. Tissue Eng Part A. 2020;26(3–4):140–156. doi:10.1089/ten.TEA.2019.0126
  • Corona BT, Rivera JC, Dalske KA, Wenke JC, Greising SM. Pharmacological mitigation of fibrosis in a porcine model of volumetric muscle loss injury. Tissue Eng Part A;2020 Jan 22; doi:10.1089/ten.TEA.2019.0272
  • Catanzano O, Boateng J. Local delivery of growth factors using wound dressings. In: Therapeutic dressings and wound healing applications. Hoboken (NJ): John Wiley & Sons, Ltd, 2020:291–314. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119433316.ch13. doi:10.1002/9781119433316.ch13
  • Ouma GO, Zafrir B, Mohler ER, Flugelman MY. Therapeutic angiogenesis in critical limb ischemia. Angiology. 2013;64(6):466–480. doi:10.1177/0003319712464514
  • Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater. 2019;93:135–151. (Drug Delivery for Musculoskeletal Applications). doi:10.1016/j.actbio.2019.01.043.
  • Zeeshan M, Kumar A, Sahu JK, Mishra A, Mishra AK. Chemistry and pharmacology of deflazacort: a novel bioactive compound for the treatment of duchenne muscular dystrophy-a mini review. Current Bioactive Compounds. 2019;15(1):41–44.
  • Finanger E, Vandenborne K, Finkel RS, Lee Sweeney H, Tennekoon G, Yum S, Mancini M, Bista P, Nichols A, Liu H, Fretzen A, Donovan JM. Phase 1 study of edasalonexent (cat-1004), an oral nf-κb inhibitor, in pediatric patients with duchenne muscular dystrophy. J Neuromuscular Dis. 2019;6(1):43–54. doi:10.3233/JND-180341
  • Rossiter HB, Casaburi R, Sciurba FC, Porszasz J, Stringer WW, Valluri U, Kashiwa M, Tauscher-Wisniewski S. A randomized, double-blind, placebo-controlled, crossover study to assess the effect of reldesemtiv on exercise tolerance in subjects with chronic obstructive pulmonary disease. In: C17. PULMONARY REHABILITATION 2019. New York (NY): American Thoracic Society, 2019:A4272–A4272. (American Thoracic Society International Conference Abstracts). https://www.atsjournals.org/doi/abs/10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4272
  • Chakravarty T, Henry TD, Kittleson M, Lima J, Siegel RJ, Slipczuk L, Pogoda JM, Smith RR, Malliaras K, Marbán L, et al. Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: results of the dilated cardiomyopathy intervention with allogeneic myocardially-regenerative cells (DYNAMIC) trial. EuroIntervention: J EuroPCR Collab with Working Group on Interventional Cardiol Eur Soc Cardiol 2019 Nov 26. doi:10.4244/EIJ-D-19-00035.
  • Sun C, Serra C, Lee G, Wagner KR. Stem cell-based therapies for duchenne muscular dystrophy. Exp Neurol. 2020;323:113086. doi:10.1016/j.expneurol.2019.113086.
  • Abdeen AA, Saha K. Manufacturing cell therapies using engineered biomaterials. Trends Biotechnol. 2017;35(10):971–982. doi:10.1016/j.tibtech.2017.06.008
  • Rose LF, Wolf EJ, Brindle T, Cernich A, Dean WK, Dearth CL, Grimm M, Kusiak A, Nitkin R, Potter K, et al The convergence of regenerative medicine and rehabilitation: federal perspectives. NPJ Regener Med. 2018;3:19.
  • Harvey ZT, Loomis GA, Mitsch S, Murphy IC, Griffin SC, Potter BK, Pasquina P. Advanced rehabilitation techniques for the multi-limb amputee. J Surg Orthop Adv. 2012;21(1):50–57.
  • Spear AM, Lawton G, Staruch RMT, Rickard RF. 2018. Regenerative medicine and war: a front-line focus for UK defence. NPJ Regener Med. 3(1):13. doi:10.1038/s41536-018-0053-4
  • Maffulli N, Nanni G. ISMuLT skeletal muscles injuries Guidelines. Muscles Ligaments Tendons J. 2013;3(4):240. doi:10.32098/mltj.04.2013.01.
  • Mase VJ, Hsu JR, Wolf SE, Wenke JC, Baer DG, Owens J, Badylak SF, Walters TJ. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics. 2010;33(7): [accessed 2017 Feb 2]. http://www.healio.com/orthopedics/journals/ortho/2010-7-33-7/%7B89d65d46-7888-490e-856e-b0f3fb1a54be%7D/clinical-application-of-an-acellular-biologic-scaffold-for-surgical-repair-of-a-large-traumatic-quadriceps-femoris-muscle-defect
  • Buccellato KH, Nordstrom M, Murphy JM, Burdea GC, Polistico K, House G, Kim N, Grampurohit N, Sorensen J, Isaacson BM, Pasquina PF. A randomized feasibility trial of a novel, integrative, and intensive virtual rehabilitation program for service members post-acquired brain injury. Mil Med. 2020;185(1–2):e203–e211. doi:10.1093/milmed/usz150
  • Ly TV, Travison TG, Castillo RC, Bosse MJ, MacKenzie EJ. LEAP Study Group. Ability of lower-extremity injury severity scores to predict functional outcome after limb salvage. J Bone Joint Surg Am. 2008;90(8):1738–1743. doi:10.2106/JBJS.G.00136
  • Krueger CA, Wenke JC, Ficke JR. Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg. 2012;73(6 Suppl 5):S438–444. doi:10.1097/TA.0b013e318275469c
  • Cho MS, Rinker BD, Weber RV, Chao JD, Ingari JV, Brooks D, Buncke GM. Functional outcome following nerve repair in the upper extremity using processed nerve allograft. J Hand Surg Am. 2012;37(11):2340–2349. doi:10.1016/j.jhsa.2012.08.028.
  • Zaza M, Kalkwarf KJ, Holcomb JB. Dried Plasma. In: Spinella PC, editor. Damage control resuscitation: identification and treatment of life-threatening hemorrhage. Cham: Springer International Publishing, 2020:145–162. DOI:10.1007/978-3-030-20820-2_8.
  • Gordon T, Amirjani N, Edwards DC, Chan KM. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol. 2010;223(1):192–202. doi:10.1016/j.expneurol.2009.09.020.
  • Williams HB. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study. Microsurgery. 1996;17(11):589–596. doi:10.1002/(SICI)1098-2752(1996)17:11<589::AID-MICR5>3.0.CO;2-K.
  • Duscio E, Cipulli F, Vasques F, Collino F, Rapetti F, Romitti F, Behnemann T, Niewenhuys J, Tonetti T, Pasticci I, Vassalli F, Reupke V, Moerer O, Quintel M, Gattinoni L. Extracorporeal CO2 removal: the minimally invasive approach, theory, and practice. Crit Care Med. 2019;47(1):33–40. doi:10.1097/CCM.0000000000003430
  • Sakuma M, Gorski G, Sheu S-H, Lee S, Barrett LB, Singh B, Omura T, Latremoliere A, Woolf CJ. Lack of motor recovery after prolonged denervation of the neuromuscular junction is not due to regenerative failure. Eur J Neurosci. 2016;43(3):451–462. doi:10.1111/ejn.13059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.