241
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of cells on spatial quantification of proteoglycans in articular cartilage of small animals

, , , , , & show all
Pages 603-614 | Received 01 Sep 2021, Accepted 25 Feb 2022, Published online: 24 Mar 2022

References

  • Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):1–9. doi:10.1007/s11926-014-0451-6.
  • Ojanen SP, Finnilä MAJ, Mäkelä JTA, Saarela K, Happonen E, Herzog W, Saarakkala S, Korhonen RK. Anterior cruciate ligament transection of rabbits alters composition, structure and biomechanics of articular cartilage and chondrocyte deformation 2 weeks post-surgery in a site-specific manner. J Biomech. 2020;98:0–11. doi:10.1016/j.jbiomech.2019.109450.
  • Chery DR, Han B, Li Q, Zhou Y, Heo S-J, Kwok B, Chandrasekaran P, Wang C, Qin L, Lu XL, Kong D, Enomoto-Iwamoto M, Mauck RL, Han L. Early changes in cartilage pericellular matrix micromechanobiology portend the onset of post-traumatic osteoarthritis. Acta Biomater. 2020;111:267–278.doi:10.1016/j.actbio.2020.05.005.
  • Collins KH, Reimer RA, Seerattan RA, Leonard TR, Herzog W. Using diet-induced obesity to understand a metabolic subtype of osteoarthritis in rats. Osteoarthr Cartil. 2015;23(6):957–965. doi:10.1016/j.joca.2015.01.015.
  • Lampropoulou-Adamidou K, Lelovas P, Karadimas EV, Liakou C, Triantafillopoulos IK, Dontas I, Papaioannou NA. Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol. 2014;24(3):263–271. doi:10.1007/s00590-013-1205-2.
  • Mäkelä JTA, Rezaeian ZS, Mikkonen S, Madden R, Han S-K, Jurvelin JS, Herzog W, Korhonen RK. Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection. Osteoarthr Cartil. 2014;22(6):869–878. doi:10.1016/j.joca.2014.04.010.
  • Arokoski MEA, Tiitu V, Jurvelin JS, Korhonen RK, Fick JM. Topographical investigation of changes in depth-wise proteoglycan distribution in rabbit femoral articular cartilage at 4 weeks after transection of the anterior cruciate ligament. J Orthop Res. 2015;33(9):1278–1286. doi:10.1002/jor.22906.
  • Stockwell RA. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat. 1971;109(Pt 3):411–421. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5153801%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1270984.
  • Malda J, de Grauw JC, Benders KEM, Kik MJL, van de Lest CHA, Creemers LB, Dhert WJA, van Weeren PR. Of mice, men and elephants: the relation between articular cartilage thickness and body mass. PLoS One. 2013;8(2):1–8. doi:10.1371/journal.pone.0057683.
  • Hunziker EB, Quinn TM, Häuselmann HJ. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil. 2002;10(7):564–572. doi:10.1053/joca.2002.0814.
  • Mori R, Ochi M, Sakai Y, Maniwa S, Kawasaki K. Quantitative cell and matrix changes in human humeral head osteoarthritic cartilage. Apmis. 2000;108(10):642–648. doi:10.1034/j.1600-0463.2000.d01-10.x.
  • Karamchedu NP, Tofte JN, Waller KA, Zhang LX, Patel TK, Jay GD. Superficial zone cellularity is deficient in mice lacking lubricin: a stereoscopic analysis. Arthritis Res Ther. 2016;18(1):1–12. doi:10.1186/s13075-016-0967-4.
  • Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.doi:10.1016/j.matbio.2015.02.003.
  • Pomin VH, Mulloy B. Glycosaminoglycans and proteoglycans. Pharmaceuticals. 2018;11(1):1–9. doi:10.3390/ph11010027.
  • Clark AL, Barclay LD, Matyas JR, Herzog W. In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint. J Biomech. 2003;36(4):553–568. doi:10.1016/S0021-9290(02)00424-4.
  • Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;10(6):432–463.
  • Rolauffs B, Muehleman C, Li J, Kurz B, Kuettner KE, Frank E, Grodzinsky AJ. Vulnerability of the superficial zone of immature articular cartilage to compressive injury. Arthritis Rheum. 2010;62(10):3016–3027. doi:10.1002/art.27610.
  • Karim A, Amin AK, Hall AC. The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy. J Anat. 2018;232(4):686–698. doi:10.1111/joa.12768.
  • Hoshiyama Y, Otsuki S, Oda S, Kurokawa Y, Nakajima M, Jotoku T, Tamura R, Okamoto Y, Lotz MK, Neo M. Chondrocyte clusters adjacent to sites of cartilage degeneration have characteristics of progenitor cells. J Orthop Res. 2015;33(4):548–555. doi:10.1002/jor.22782.
  • Rieppo J, Hallikainen J, Jurvelin JS, Kiviranta I, Helminen HJ, Hyttinen MM. 2008. Practical considerations in the use of polarized light microscopy in the analysis of the collagen network in articular cartilage. Microsc Res Tech. 71(4):279–287. doi:10.1002/jemt.20551.
  • Kiviranta I, Jurvelin J, Säämänen AM, Helminen HJ. Microspectrophotometric quantitation of glycosaminoglycans in articular cartilage sections stained with Safranin O. Histochemistry. 1985;82(3):249–255. doi:10.1007/BF00501401.
  • Rieppo L, Janssen L, Rahunen K, Lehenkari P, Finnilä MAJ, Saarakkala S. Histochemical quantification of collagen content in articular cartilage. PLoS One. 2019;14(11):1–12. doi:10.1371/journal.pone.0224839.
  • Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, Böhm A, Deubner J, Jäckel Z, Seiwald K, Dovzhenko A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay TL, Prinz M, Palme K, Simons M, Diester I, Brox T, Ronneberger O. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16(1):67–70. doi:10.1038/s41592-018-0261-2.
  • Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Lecture notes in Computer Science (including subseries lecture notes in Artificial Intelligence and lecture notes in Bioinformatics). 2015. Springer, p. 234–241.
  • Lowekamp BC, Chen DT, Ibáñez L, Blezek D. The design of simpleITK. Front Neuroinform. 2013;7(DEC):1–14. doi:10.3389/fninf.2013.00045.
  • Ebrahimi M, Turunen MJ, Finnilä MA, Joukainen A, Kröger H, Saarakkala S, Korhonen RK, Tanska P. Structure–function relationships of healthy and osteoarthritic human tibial cartilage: experimental and numerical investigation. Ann Biomed Eng. 2020;48:2887–2900. doi:10.1007/s10439-020-02559-0.
  • Kiraly K, Lapveteläinen T, Arokoski J, Törrönen K, Modis L, Kiviranta HJH I, Helminen HJ. Application of selected cationic dyes for the semiquantitative estimation of glycosaminoglycans in histological sections of articular cartilage by microspectrophotometry. Histochem J. 1996;28:577–590. doi:10.1007/BF02331378.
  • Singh S, Afara I. A comparison of the histochemical and image-derived proteoglycan content of articular cartilage. Anat Physiol. 2013;03(2):2–7. doi:10.4172/2161-0940.1000120.
  • Li H, Liao X, Li C, Huang H, Li C. Edge detection of noisy images based on cellular neural networks. Commun Nonlinear Sci Numer Simul. 2011;16(9):3746–3759. doi:10.1016/j.cnsns.2010.12.017.
  • Hasanzadeh Mofrad M, Sadeghi S, Rezvanian A, Meybodi MR. Cellular edge detection: combining cellular automata and cellular learning automata. AEU - Int J Electron Commun. 2015;69(9):1282–1290. doi:10.1016/j.aeue.2015.05.010.
  • Yang L, Coleman MC, Hines MR, Kluz PN, Brouillette MJ, Goetz JE. Deep learning for chondrocyte identification in automated histological analysis of articular cartilage. Iowa Orthop J. 2019;39(2):1–8.
  • Van der Kraan PM, Van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil. 2012;20(3):223–232. doi:10.1016/j.joca.2011.12.003.
  • Bobacz K, Erlacher L, Smolen J, et al. Chondrocyte number and proteoglycan synthesis in the aging and osteoarthritic human articular cartilage. Ann Rheum Dis. 2004;63(12):1618–1622. doi:10.1136/ard.2002.002162.
  • Lotz MK, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone. 2012;51(2):241–248. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
  • Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21(319):1–7.
  • Guilak F, Nims RJ, Dicks A, Wu C-L, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 2018;71–72:40–50. doi:10.1016/j.matbio.2018.05.008.
  • Sibole SC, Moo EK, Federico S, Herzog H. The protective function of directed asymmetry in the pericellular matrix enveloping chondrocytes. Ann Biomed Eng. 2022;50(1):39–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.