228
Views
1
CrossRef citations to date
0
Altmetric
Literature Reviews.

Current status and future trends of reconstructing a vascularized tissue-engineered trachea

, , &
Pages 428-444 | Received 29 Jul 2022, Accepted 01 May 2023, Published online: 17 May 2023

References

  • Damiano G, Palumbo VD, Fazzotta S, Curione F, Lo Monte G, Brucato VMB. Current strategies for tracheal replacement: a review. Life (Basel). 2021;11(7):618. doi:10.3390/life11070618.
  • Resheidat A, Kelly T, Mossad E. Incidental diagnosis of congenital tracheal stenosis in children with congenital heart disease presenting for cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(3):781–784. doi:10.1053/j.jvca.2018.04.027.
  • Vranckx JJ, Delaere P. The current status and outlook of trachea transplantation. Curr Opin Organ Transplant. 2020;25(6):601–608. doi:10.1097/MOT.0000000000000808.
  • Soriano L, Khalid T, Whelan D, O’Huallachain N, Redmond KC, O’Brien FJ. Development and clinical translation of tubular constructs for tracheal tissue engineering: a review. Eur Respir Rev. 2021;30(162):210154. doi:10.1183/16000617.0154-2021.
  • Chinen T, Hirayasu T, Kuniyoshi Y, Uehara K, Kinjo T. Experimental reconstruction of the trachea with urinary bladder wall. Ann Thorac Cardiovasc Surg. 2016;22(3):153–160. doi:10.5761/atcs.oa.15-00375.
  • Aoki FG, Varma R, Marin-Araujo AE, Lee H, Soleas JP, Li AH. De-epithelialization of porcine tracheal allografts as an approach for tracheal tissue engineering. null. 2019;9(1):12034. doi:10.1038/s41598-019-48450-4.
  • Goh CS, Joethy JV, Tan BK, Wong M. Large animal models for long-segment tracheal reconstruction: a systematic review. J Surg Res. 2018;231:140–153. doi:10.1016/j.jss.2018.05.025.
  • Den Hondt M, Vranckx JJ. Reconstruction of defects of the trachea. J Mater Sci Mater Med. 2017;28(2):24. doi:10.1007/s10856-016-5835-x.
  • Wang M, Zhu B, Xu X. Follow-Up Investigation of 41 children after metallic airway stent implantation: an 8-Year experience. Front Pediatr. 2020;8:579209. doi:10.3389/fped.2020.579209.
  • Lee H, Marin-Araujo AE, Aoki FG, Haykal S, Waddell TK, Amon CH. Computational fluid dynamics for enhanced tracheal bioreactor design and long-segment graft recellularization. null. 2021;11(1):1187. doi:10.1038/s41598-020-80841-w.
  • Martinod E, Chouahnia K, Radu DM, Joudiou P, Uzunhan Y, Bensidhoum M. Feasibility of bioengineered tracheal and bronchial reconstruction using stented aortic matrices. JAMA. 2018;319(21):2212–2222. doi:10.1001/jama.2018.4653.
  • Martinod E, Radu DM, Onorati I, Portela AMS, Peretti M, Guiraudet P, Destable, MD, Uzunhan, Y, Freynet, O, Chouahnia, K. Airway replacement using stented aortic matrices: long-term follow-up and results of the TRITON-01 study in 35 adult patients. Am J Transplant. 2022;22(12):2961–2970. doi:10.1111/ajt.17137.
  • Rehmani SS, Al-Ayoubi AM, Ayub A, Barsky M, Lewis E, Flores R, Lebovics R, Bhora FY. Three-Dimensional-Printed bioengineered tracheal grafts: preclinical results and potential for human use. Ann Thorac Surg. 2017;104(3):998–1004. doi:10.1016/j.athoracsur.2017.03.051.
  • Park JH, Yoon JK, Lee JB, Shin YM, Lee KW, Bae SW, Lee J, Yu J, Jung, CR, Youn, YN. Experimental tracheal replacement using 3-dimensional bioprinted artificial trachea with autologous epithelial cells and chondrocytes. null. 2019;9(1):2103. doi:10.1038/s41598-019-38565-z.
  • She Y, Fan Z, Wang L, Li Y, Sun W, Tang H, Zhang L, Wu L, Zheng H, Chen C. 3D printed biomimetic PCL scaffold as framework interspersed with collagen for long segment tracheal replacement. Front Cell Dev Biol. 2021;9:629796.
  • Park JY, Ryu H, Lee B, Ha DH, Ahn M, Kim S. Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication. 2018;11(1):015002. doi:10.1088/1758-5090/aae545.
  • Lee M, Choi JS, Eom MR, Jeong EJ, Kim J, Park SA, Kwon SK. Prevascularized tracheal scaffolds using the platysma flap for enhanced tracheal regeneration. Laryngoscope. 2021;131(8):1732–1740. doi:10.1002/lary.29178.
  • Ghorbani F, Moradi L, Shadmehr MB, Bonakdar S, Droodinia A, Safshekan F. In-vivo characterization of a 3D hybrid scaffold based on PCL/decellularized aorta for tracheal tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;81:74–83. doi:10.1016/j.msec.2017.04.150.
  • Liu CS, Feng BW, He SR, Liu YM, Chen L, Chen YL, Yao ZY, Jian MQ. Preparation and evaluation of a silk fibroin–polycaprolactone biodegradable biomimetic tracheal scaffold. J Biomed Mater Res B Appl Biomater. 2022;110(6):1292–1305. doi:10.1002/jbm.b.35000.
  • Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784. doi:10.3390/cells8080784.
  • Joddar B, Kumar SA, Kumar A. A contact-Based method for differentiation of human mesenchymal stem cells into an endothelial cell-Phenotype. Cell Biochem Biophys. 2018;76(1–2):187–195. doi:10.1007/s12013-017-0828-z.
  • Chae S, Lee SS, Choi YJ, Hong DH, Gao G, Wang JH, Cho, Dong W. et al. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials. 2021;267:120466.
  • Mao Q, Liang XL, Zhang CL, Pang YH, Lu YX. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther. 2019;10(1):393. doi:10.1186/s13287-019-1522-4.
  • Yao ZY, Feng BW, Liu CS, Liu YM, Zhou HY, Zhang XH, Jian, MQ, Mo, JL, Liang YJ, Chen L, Liu XQ. The application of a bone marrow mesenchymal stem cell membrane in the vascularization of a decellularized tracheal scaffold. Stem Cells Int. 2021;2021:6624265.
  • Gao B, Jing H, Gao M, Wang S, Fu W, Zhang X. Long-segmental tracheal reconstruction in rabbits with pedicled tissue-engineered trachea based on a 3D-printed scaffold. Acta Biomater. 2019;97:177–186.
  • Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, Liu X, Wu Y, Parvanian S, Zhu W, Eriksson JE. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2019;9(1):1709262. doi:10.1080/20013078.2019.1709262.
  • Park HS, Lee JS, Jung H, Kim DY, Kim SW, Sultan MT, Park CH. An omentum-cultured 3D-printed artificial trachea: in vivo bioreactor. Artif Cells, Nanomed Biotechnol. 2018;46(sup3):S1131–40. doi:10.1080/21691401.2018.1533844.
  • O’Leary C, Soriano L, Fagan-Murphy A, Ivankovic I, Cavanagh B, O’Brien FJ, Cryan SA. The fabrication and in vitro evaluation of retinoic acid-Loaded electrospun composite biomaterials for tracheal tissue regeneration. Front Bioeng Biotechnol. 2020;8:190.
  • Garcia-Villen F, Ruiz-Alonso S, Lafuente-Merchan M, Gallego I, Sainz-Ramos M, Saenz-Del-Burgo L, Pedraz JL. Clay minerals as bioink ingredients for 3D printing and 3D bioprinting: application in tissue engineering and regenerative medicine. Pharmaceutics. 2021;13(11):1806. doi:10.3390/pharmaceutics13111806.
  • Zhong Y, Yang W, Yin Pan Z, Pan S, Zhang SQ, Hao Wang Z, Gu S, Shi H. In vivo transplantation of stem cells with a genipin linked scaffold for tracheal construction. J Biomater Appl. 2019;34(1):47–60. doi:10.1177/0885328219839193.
  • Bae SW, Lee KW, Park JH, Lee J, Jung CR, Yu J, Kim, Hwi-Yool Kim, Dae-Hyun. 3D bioprinted artificial trachea with epithelial cells and chondrogenic-Differentiated bone marrow-Derived mesenchymal stem cells. Int J Mol Sci. 2018;19(6):1624. doi:10.3390/ijms19061624.
  • Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration “Tracheal tissue engineering: an overview”. J Tissue Eng Regen Med. 2020;14(5):653–672. doi:10.1002/term.3019.
  • Dharmadhikari S, Liu L, Shontz K, Wiet M, White A, Goins A, Akula H, Johnson J, Reynolds SD, Breuer CK, Chiang T. Deconstructing tissue engineered trachea: assessing the role of synthetic scaffolds, segmental replacement and cell seeding on graft performance. Acta Biomater. 2020;102:181–191.
  • Song HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS. Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 2018;22(3):340–354. doi:10.1016/j.stem.2018.02.009.
  • Hosseini M, Ayyari M, Meyfour A, Piacente S, Cerulli A, Crawford A. Cardenolide-rich fraction of pergularia tomentosa as a novel antiangiogenic agent mainly targeting endothelial cell migration. Daru. 2020;28(2):533–543. doi:10.1007/s40199-020-00356-7.
  • Hu C, Huang S, Wu F, Ding H. MiR-98 inhibits cell proliferation and induces cell apoptosis by targeting MAPK6 in HUVECs. Exp Ther Med. 2018;15(3):2755–2760. doi:10.3892/etm.2018.5735.
  • Li H, Li B, Zheng Y. Exploring the mechanism of action compound-Xueshuantong capsule in diabetic retinopathy treatment based on network pharmacology. Evid Based Complement Alternat Med. 2020;2020:8467046. doi:10.1155/2020/8467046.
  • Chari S, Mao S. Timeline: iPscs–the first decade. Cell. 2016;164(3):580. doi:10.1016/j.cell.2016.01.023.
  • Peters EB. Endothelial progenitor cells for the vascularization of engineered tissues. Tissue Eng Part B Rev. 2018;24(1):1–24. doi:10.1089/ten.teb.2017.0127.
  • Zhang W, Bai X, Zhao B, Li Y, Zhang Y Li Z, Wang X, Luo L, Han F, Zhang J, Han S. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018;370(2):333–342. doi:10.1016/j.yexcr.2018.06.035.
  • Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise review: using fat to fight disease: a systematic review of nonhomologous adipose-Derived stromal/Stem cell therapies. Stem Cells. 2018;36(9):1311–1328. doi:10.1002/stem.2847.
  • Kronemberger GS, Miranda G, Tavares RSN, Montenegro B, Ú A K, Baptista LS. Recapitulating tumorigenesis in vitro: opportunities and challenges of 3D bioprinting. Front Bioeng Biotechnol. 2021;9:682498. doi:10.3389/fbioe.2021.682498.
  • Kreimendahl F, Marquardt Y, Apel C, Bartneck M, Zwadlo-Klarwasser G, Hepp J. Macrophages significantly enhance wound healing in a vascularized skin model. J Biomed Mater Res A. 2019;107(6):1340–1350. doi:10.1002/jbm.a.36648.
  • Kreimendahl F, Ossenbrink S, Kopf M, Westhofen M, Schmitz-Rode T, Fischer H, Jockenhoevel S, Thiebes AL. Combination of vascularization and cilia formation for three-dimensional airway tissue engineering. J Biomed Mater Res A. 2019;107(9):2053–2062. doi:10.1002/jbm.a.36718.
  • Taniguchi D, Matsumoto K, Tsuchiya T, Machino R, Takeoka Y, Elgalad A, Gunge K, Takagi K, Taura Y, Hatachi G, Matsuo N. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact Cardiovasc Thorac Surg. 2018;26(5):745–752. doi:10.1093/icvts/ivx444.
  • Machino R, Matsumoto K, Taniguchi D, Tsuchiya T, Takeoka Y, Taura Y, Moriyama M, Tetsuo T, Oyama S, Takagi K, Miyazaki T. Replacement of rat tracheas by layered, trachea-Like, scaffold-free structures of human cells using a bio-3D printing system. Adv Healthcare Mater. 2019;8(7):e1800983. doi:10.1002/adhm.201800983.
  • Jung SY, Lee SJ, Kim HY, Park HS, Wang Z, Kim HJ, Yoo JJ, Chung SM, Kim HS. 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Biofabrication. 2016;8(4):045015. doi:10.1088/1758-5090/8/4/045015.
  • Hasaart KAL, Manders F, Ubels J, Verheul M, van Roosmalen MJ, Groenen NM, Oka R, Kuijk E, de Sousa Lopes SM, van Boxtel R. Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells in vivo. iScience. 2022;25(2):103736. doi:10.1016/j.isci.2022.103736.
  • Wu D, Chang X, Tian J, Kang L, Wu Y, Liu J, Wu X, Huang Y, Gao B, Wang H, Qiu G. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis. J Nanobiotechnology. 2021;19(1):209. doi:10.1186/s12951-021-00958-6.
  • Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther. 2019;10(1):158. doi:10.1186/s13287-019-1276-z.
  • Cai G, Cai G, Zhou H, Zhuang Z, Liu K, Pei S, Wang Y, Wang H, Wang X, Xu S, Cui C. Mesenchymal stem cell-derived exosome miR-542-3p suppresses inflammation and prevents cerebral infarction. Stem Cell Res Ther. 2021;12(1):2. doi:10.1186/s13287-020-02030-w.
  • Panfoli I, Santucci L, Bruschi M, Petretto A, Calzia D, Ramenghi LA, Ghiggeri G, Candiano G. Microvesicles as promising biological tools for diagnosis and therapy. Expert Rev Proteomics. 2018;15(10):801–808. doi:10.1080/14789450.2018.1528149.
  • Jeske R, Bejoy J, Marzano M, Li Y. Human pluripotent stem cell-Derived extracellular vesicles: characteristics and applications. Tissue Eng Part B Rev. 2020;26(2):129–144. doi:10.1089/ten.teb.2019.0252.
  • Cao J, Zhang M, Xie F, Lou J, Zhou X, Zhang L, Fang M, Zhou F. Exosomes in head and neck cancer: roles, mechanisms and applications. Cancer Lett. 2020;494:7–16.
  • Liao W, Ning Y, Xu HJ, Zou WZ, Hu J, Liu XZ, Yang Y, Li ZH. BMSC-derived exosomes carrying microRNA-122-5p promote proliferation of osteoblasts in osteonecrosis of the femoral head. Clin Sci (Lond). 2019;133(18):1955–1975. doi:10.1042/CS20181064.
  • Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F, Sun L. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11(1):496. doi:10.1186/s13287-020-02005-x.
  • Liang B, Liang JM, Ding JN, Xu J, Xu JG, Chai YM. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther. 2019;10(1):335. doi:10.1186/s13287-019-1410-y.
  • Wei Q, Wang Y, Ma K, Li Q, Li B, Hu W, Fu X, Zhang C. Extracellular vesicles from human umbilical cord mesenchymal stem cells facilitate diabetic wound healing through MiR-17-5p-mediated enhancement of angiogenesis. Stem Cell Rev Rep. 2021;18(3):1025–1040. doi:10.1007/s12015-021-10176-0.
  • Zhang S, Yang J, Shen L. Extracellular vesicle-mediated regulation of tumor angiogenesis- implications for anti-angiogenesis therapy. J Cell Mol Med. 2021;25(6):2776–2785. doi:10.1111/jcmm.16359.
  • Xiao S, Xiao C, Miao Y, Wang J, Chen R, Fan Z, Hu Z. Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing. Stem Cell Res Ther. 2021;12(1):255. doi:10.1186/s13287-021-02333-6.
  • Heo JS, Kim S, Yang CE, Choi Y, Song SY, Kim HO. Human adipose mesenchymal stem cell-Derived exosomes: a key player in wound healing. Tissue Eng Regen Med. 2021;18(4):537–548. doi:10.1007/s13770-020-00316-x.
  • Zhang X, Jiang Y, Huang Q, Wu Z, Pu H, Xu Z, Li, B, Lu X, Yang X, Qin J, Peng Z. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res Ther. 2021;12(1):403. doi:10.1186/s13287-021-02475-7.
  • Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. null. 2021;16(7):1662–1673. doi:10.1016/j.stemcr.2021.05.003.
  • Xu H, Wang Z, Liu L, Zhang B, Li B. Exosomes derived from adipose tissue, bone marrow, and umbilical cord blood for cardioprotection after myocardial infarction. J Cell Biochem. 2020;121(3):2089–2102. doi:10.1002/jcb.27399.
  • Ni J, Liu X, Yin Y, Zhang P, Xu YW, Liu Z. Exosomes derived from TIMP2-Modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway. Oxid Med Cell Longev. 2019;2019:1958941. doi:10.1155/2019/1958941.
  • Lv K, Li Q, Zhang L, Wang Y, Zhong Z, Zhao J, Lin X, Wang J, Zhu K, Xiao C, Ke C. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics. 2019;9(24):7403–7416. doi:10.7150/thno.32637.
  • Zhu D, Wang Y, Thomas M, McLaughlin K, Oguljahan B, Henderson J, Yang Q, Chen YE, Liu D. Exosomes from adipose-derived stem cells alleviate myocardial infarction via microRNA-31/FIH1/HIF-1alpha pathway. J Mol Cell Cardiol. 2022;162:10–19.
  • Zeng T, Yuan P, Liang L, Zhang X, Zhang H, Wu W. Cartilaginous extracellular matrix enriched with human gingival mesenchymal stem cells derived “Matrix bound extracellular vesicles. Enabled Functional Reconstruction of Tracheal Defect. 2022;9(2):e2102735. doi:10.1002/advs.202102735.
  • Zhang X, Jing H, Luo K, Shi B, Luo Q, Zhu Z, He X, Zheng J. Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea. Mater Sci Eng C Mater Biol Appl. 2021;129:112371.
  • Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–3243. doi:10.1016/j.biomaterials.2011.01.057.
  • Shin YS, Choi JW, Park JK, Kim YS, Yang SS, Min BH. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng. 2015;43(4):1003–1013. doi:10.1007/s10439-014-1126-1.
  • Sun F, Jiang Y, Xu Y, Shi H, Zhang S, Liu X, Pan S, Ye G, Zhang W, Zhang F, Zhong C. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications. null. 2016;6(1):24429. doi:10.1038/srep24429.
  • Partington L, Mordan NJ, Mason C, Knowles JC, Kim HW, Lowdell MW, Birchall MA, Wall IB. Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomater. 2013;9(2):5251–5261. doi:10.1016/j.actbio.2012.10.004.
  • Mayorca-Guiliani AE, Willacy O, Madsen CD, Rafaeva M, Elisabeth Heumuller S, Bock F, Sengle G, Koch M, Imhof T, Zaucke, F, Wagener R. Decellularization and antibody staining of mouse tissues to map native extracellular matrix structures in 3D. Nat Protoc. 2019;14(12):3395–3425. doi:10.1038/s41596-019-0225-8.
  • Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5(1):3935. doi:10.1038/ncomms4935.
  • Buie T, McCune J, Cosgriff-Hernandez E. Gelatin matrices for growth factor sequestration. Trends Biotechnol. 2020;38(5):546–557. doi:10.1016/j.tibtech.2019.12.005.
  • Subbiah R, Guldberg RE. Materials science and design principles of growth factor delivery systems in tissue engineering and regenerative medicine. Adv Healthcare Mater. 2019;8(1):e1801000. doi:10.1002/adhm.201801000.
  • Pontes-Quero S, Fernández-Chacón M, Luo W, Lunella FF, Casquero-Garcia V, Garcia-Gonzalez I, Hermoso A, Rocha SF, Bansal M, Benedito R. High mitogenic stimulation arrests angiogenesis. Nat Commun. 2019;10(1):2016. doi:10.1038/s41467-019-09875-7.
  • Johnson T, Zhao L, Manuel G, Taylor H, Liu D. Approaches to therapeutic angiogenesis for ischemic heart disease. J Mol Med (Berl). 2019;97(2):141–151. doi:10.1007/s00109-018-1729-3.
  • Wang K, Chen X, Pan Y, Cui Y, Zhou X, Kong D, Zhao Q. Enhanced vascularization in hybrid PCL/gelatin fibrous scaffolds with sustained release of VEGF. Biomed Res Int. 2015;2015:865076.
  • Janse van Rensburg A, Davies NH, Oosthuysen A, Chokoza C, Zilla P, Bezuidenhout D. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels. Acta Biomater. 2017;49:89–100. doi:10.1016/j.actbio.2016.11.036.
  • Kampmann A, Lindhorst D, Schumann P, Zimmerer R, Kokemuller H, Rucker M. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvasc Res. 2013;90:71–79.
  • Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14(13):2202–2211. doi:10.1039/C4LC00030G.
  • Ke D, Yi H, Est-Witte S, George S, Kengla C, Lee SJ, Atala A, Murphy SV. Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication. 2019;12(1):015022. doi:10.1088/1758-5090/ab5354.
  • Park SH, Uzawa T, Hattori F, Ogino S, Morimoto N, Tsuneda S, Ito Y. “All-in-one” in vitro selection of collagen-binding vascular endothelial growth factor. Biomaterials. 2018;161:270–278.
  • Anderson EM, Silva EA, Hao Y, Martinick KD, Vermillion SA, Stafford AG, Doherty EG, Wang L, Doherty EJ, Grossman PM, Mooney DJ. VEGF and IGF delivered from alginate hydrogels promote stable perfusion recovery in ischemic hind limbs of aged mice and young rabbits. J Vasc Res. 2017;54(5):288–298. doi:10.1159/000479869.
  • Sharma D, Hamlet S, Vaquette C, Petcu EB, Ramamurthy P, Ivanovski S. Local delivery of hydrogel encapsulated vascular endothelial growth factor for the prevention of medication-related osteonecrosis of the jaw. null. 2021;11(1):23371. doi:10.1038/s41598-021-02637-w.
  • Swaminathan B, Youn SW, Naiche LA, Du J, Villa SR, Metz JB, Feng H, Zhang C, Kopan R, Sims PA, Kitajewski JK. Endothelial notch signaling directly regulates the small GTPase RND1 to facilitate notch suppression of endothelial migration. null. 2022;12(1):1655. doi:10.1038/s41598-022-05666-1.
  • Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, Ondr JK, Rao S, Lang RA, Thurston G, Gerhardt H. Nrarp coordinates endothelial notch and wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16(1):70–82. doi:10.1016/j.devcel.2008.12.009.
  • Huang TF, Wang SW, Lai YW, Liu SC, Chen YJ, Hsueh TY, Lin CC, Lin CH, Chung CH. 4-acetylantroquinonol B suppresses prostate cancer growth and angiogenesis via a VEGF/PI3K/ERK/VEGF/PI3K/ERK/Mtor-Dependent signaling pathway in subcutaneous xenograft and in vivo angiogenesis models. Int J Mol Sci. 2022;23(3):1446. doi:10.3390/ijms23031446.
  • Wang B, Zhang C, Chu D, Ma X, Yu T, Liu X, Hu C. Astragaloside IV improves angiogenesis under hypoxic conditions by enhancing hypoxia‑inducible factor‑1α SUMOylation. Mol Med Rep. 2021;23(4). doi:10.3892/mmr.2021.11883.
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–1264. doi:10.1016/j.cell.2019.01.021.
  • Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol Med Rep. 2018;18(4):3547–3554. doi:10.3892/mmr.2018.9375.
  • Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, Li L. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 2019;13(3):291–301. doi:10.1007/s12079-019-00511-z.
  • Kwak EA, Pan CC, Ramonett A, Kumar S, Cruz-Flores P, Ahmed T, Ortiz HR, Lochhead JJ, Ellis NA, Mouneimne G, Georgieva TG. β(IV)-spectrin as a stalk cell-intrinsic regulator of VEGF signaling. Nat Commun. 2022;13(1):1326. doi:10.1038/s41467-022-28933-1.
  • Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis. 2021;24(2):213–236. doi:10.1007/s10456-021-09785-7.
  • Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–625. doi:10.1038/nrm.2016.87.
  • Tang Q, Jin H, Tong M, Zheng G, Xie Z, Tang S, Jin J, Shang P, Xu H, Shen L, Zhang Y. Inhibition of Dll4/Notch1 pathway promotes angiogenesis of masquelet’s induced membrane in rats. Experimental & Molecular Medicine. 2018;50(4):1–15. doi:10.1038/s12276-018-0062-9.
  • Kim S, Lee M, Choi YK. The role of a neurovascular signaling pathway involving hypoxia-Inducible factor and notch in the function of the central nervous system. Biomol & Therapeutics. 2020;28(1):45–57. doi:10.4062/biomolther.2019.119.
  • Farooqi AA, Pinheiro M, Granja A, Farabegoli F, Reis S, Attar R, Sabitaliyevich UY, Xu B, Ahmad A. EGCG mediated targeting of deregulated signaling pathways and non-Coding RNAs in different cancers: focus on JAK/STAT, Wnt/β-Catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers. 2020;12(4). doi:10.3390/cancers12040951.
  • Gao Y, Zhang R, Wei G, Dai S, Zhang X, Yang W, Li X, Bai C. Long non-coding RNA maternally expressed 3 increases the expression of neuron-specific genes by targeting mir-128-3p in all-Trans retinoic acid-Induced neurogenic differentiation from amniotic epithelial cells. Front Cell Dev Biol. 2019;7:342.
  • Carrieri FA, Dale JK. Turn it down a notch. Front Cell Dev Biol. 2016;4:151. doi:10.3389/fcell.2016.00151.
  • Boareto M, Jolly MK, Ben-Jacob E, Onuchic JN Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(29):E3836–44.
  • Tetzlaff F, Fischer A. Control of blood vessel formation by notch signaling. Advances in experimental medicine and biology. 2018;1066:319–338.
  • Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605–635. doi:10.1016/j.cell.2017.07.029.
  • Dornan GL, Burke JE. Molecular mechanisms of human disease mediated by oncogenic and primary immunodeficiency mutations in class IA phosphoinositide 3-Kinases. Front Immunol. 2018;9:575. doi:10.3389/fimmu.2018.00575.
  • Vallejo-Díaz J, Chagoyen M, Olazabal-Morán M, González-García A, Carrera AC. The opposing roles of PIK3R1/p85α and PIK3R2/p85β in cancer. Trends in Cancer. 2019;5(4):233–244. doi:10.1016/j.trecan.2019.02.009.
  • Ma L, Tao C, Zhang Y. MicroRNA-517c functions as a tumor suppressor in hepatocellular carcinoma via downregulation of kpna2 and inhibition of PI3K/AKT pathway. J Healthc Eng. 2022;2022:7026174. doi:10.1155/2022/7026174.
  • Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R. PTEN tumor-suppressor: the dam of stemness in cancer. Cancers. 2019;11(8). doi:10.3390/cancers11081076.
  • Yang J, Xu J, Tao L, Wang S, Xiang H, Tang Y. Synergetic protective effect of remote ischemic preconditioning and prolyl 4‑hydroxylase inhibition in ischemic cardiac injury. Mol Med Rep. 2022;25(3). doi:10.3892/mmr.2022.12596.
  • Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F. Dll4 and notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. 2017;19(8):915–927. doi:10.1038/ncb3555.
  • Luo W, Garcia-Gonzalez I, Fernández-Chacón M, Casquero-Garcia V, Sanchez-Muñoz MS, Mühleder S, Garcia-ortega, L Arterialization requires the timely suppression of cell growth. Nature. 2021;589(7842):437–441. doi:10.1038/s41586-020-3018-x.
  • Wang Y, Shen Y, Liu Z, Gu J, Xu C, Qian S, Zhang, X, Zhou, B, Jin, Y, Sun, Y. Dl-NBP (Dl-3-N-Butylphthalide) treatment promotes neurological functional recovery accompanied by the upregulation of white matter integrity and HIF-1α/VEGF/Notch/Dll4 Expression. Front Pharmacol. 2019;10:1595.
  • Betz C, Lenard A, Belting HG, Affolter M. Cell behaviors and dynamics during angiogenesis. development (Cambridge. England). 2016;143(13):2249–2260. doi:10.1242/dev.135616.
  • Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou, F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int. 2021;21(1):221. doi:10.1186/s12935-021-01920-0.
  • Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer, S. Meder, B. Meese, E. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865–3877. doi:10.1093/nar/gkw116.
  • Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as therapeutic targets for chronic wound healing. Mol Ther Nucleic Acids. 2017;8:46–55. doi:10.1016/j.omtn.2017.06.003.
  • Zhang J, Rao G, Qiu J, He R, Wang Q. MicroRNA-210 improves perfusion recovery following hindlimb ischemia via suppressing reactive oxygen species. Exp Ther Med. 2020;20(6):236. doi:10.3892/etm.2020.9366.
  • Vogiatzi G, Oikonomou E, Deftereos S, Siasos G, Tousoulis D. Peripheral artery disease: a micro-RNA-related condition? Curr Opin Pharmacol. 2018;39:105–112. doi:10.1016/j.coph.2018.04.001.
  • Shah S, Lowery E, Braun RK, Martin A, Huang N, Medina M, Sethupathi P, Seki Y, Takami M, Byrne K, Wigfield C. Cellular basis of tissue regeneration by omentum. PLos One. 2012;7(6):e38368. doi:10.1371/journal.pone.0038368.
  • Guibert N, Didier A, Moreno B, Mhanna L, Brouchet L, Plat G, Hermant C, Mazieres J. Treatment of post-transplant complex airway stenosis with a three-Dimensional, computer-assisted customized airway stent. Am J Respir Crit Care Med. 2017;195(7):e31–3. doi:10.1164/rccm.201611-2361IM.
  • Xu Y, Guo Z, Liu R, Wang H, Wang S, Weder W, Pan Y, Wu J, Zhao H, Luo Q, Tan Q. Bioengineered carina reconstruction using in-Vivo bioreactor technique in human: proof of concept study. Transl Lung Cancer Res. 2020;9(3):705–712. doi:10.21037/tlcr-20-534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.