112
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Healing potential of curcumin nanomicelles in cutaneous burn wounds: an in vitro and in vivo study

, &
Pages 555-568 | Received 04 Jan 2023, Accepted 05 Jul 2023, Published online: 17 Jul 2023

References

  • Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int J Environ Res Public Health. 2022;19(3):1338. doi:10.3390/ijerph19031338.
  • Ramhormozi P, Ansari JM, Simorgh S, Asgari HR, Najafi M, Barati M, Babakhani A, Nobakht M. Simvastatin accelerates the healing process of burn wound in Wistar rats through Akt/mTOR signaling pathway. Ann Anat. 2021;236:151652. doi:10.1016/j.aanat.2020.151652.
  • Ramhormozi P, Mohajer Ansari J, Simorgh S, Nobakht M. Bone marrow-derived mesenchymal stem cells combined with simvastatin accelerates burn wound healing by activation of the akt/mtor pathway. J Burn Care Res. 2020;41(5):1069–1078. doi:10.1093/jbcr/iraa005.
  • Asuku M, Shupp JW. Burn wound conversion: clinical implications for the treatment of severe burns. J Wound Care. 2023;32(Sup5):S11–S20. doi:10.12968/jowc.2023.32.Sup5.S11.
  • Jeschke MG. Postburn hypermetabolism: past, present, and future. J Burn Care Res. 2016;37(2):86–96. doi:10.1097/BCR.0000000000000265.
  • Mirhaj M, Labbaf S, Tavakoli M, Seifalian AM. Emerging treatment strategies in wound care. Int Wound J. 2022;19(7):1934–1954. doi:10.1111/iwj.13786.
  • Kadoya K, Amano S, Nishiyama T, Inomata S, Tsunenaga M, Kumagai N, Matsuzaki K. Changes in the expression of epidermal differentiation markers at sites where cultured epithelial autografts were transplanted onto wounds from burn scar excision. Int Wound J. 2016;13(3):412–417. doi:10.1111/iwj.12323.
  • Stone Ii R, Natesan S, Kowalczewski CJ, Mangum LH, Clay NE, Clohessy RM. Advancements in regenerative strategies through the continuum of burn care. Front Pharmacol. 2018;9:672.
  • Silveira PC, Ferreira KB, da Rocha FR, Pieri BL, Pedroso GS, De Souza CT, Nesi RT, Pinho RA. Effect of Low-Power Laser (LPL) and Light-Emitting Diode (LED) on inflammatory response in burn wound healing. Inflammation. 2016;39(4):1395–1404. doi:10.1007/s10753-016-0371-x.
  • Bahramsoltani R, Farzaei MH, Rahimi R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res. 2014;306(7):601–617. doi:10.1007/s00403-014-1474-6.
  • Kamel R, Afifi SM, Abdou AM, Esatbeyoglu T, AbouSamra MM. Nanolipogel loaded with tea tree oil for the management of burn: gc-ms analysis, in vitro and in vivo evaluation. Mol. 2022;27(19):6143. doi:10.3390/molecules27196143.
  • Kumari M, Nanda DK. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns. 2022;S0305-4179(22):00278–9. doi:10.1016/j.burns.2022.10.008.
  • Almoshari Y, Iqbal H, Razzaq A, Ali Ahmad K, Khan MK, Saeed Alqahtani S, Sultan MH, Ali Khan B. Development of nanocubosomes co-loaded with dual anticancer agents curcumin and temozolomide for effective Colon cancer therapy. Drug Deliv. 2022;29(1):2633–2643. doi:10.1080/10717544.2022.2108938.
  • de Souza Silva FK, Costa-Orlandi CB, Fernandes MA, Pegorin Brasil GS, Mussagy CU, Scontri M. Biocompatible anti-aging face mask prepared with curcumin and natural rubber with antioxidant properties. Int J Biol Macromol. 2023;242(Pt 1):124778. doi:10.1016/j.ijbiomac.2023.124778.
  • Zhang M, Zhang X, Tian T, Zhang Q, Wen Y, Zhu J, Xiao D, Cui W, Lin Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact Mater. 2021;8:368–380.
  • Sadeghi-Ghadi Z, Behjou N, Ebrahimnejad P, Mahkam M, Goli H, Lam M, Nokhodchi A. Improving antibacterial efficiency of curcumin in magnetic polymeric nanocomposites. J Pharm Innov. 2023;18(1):13–28. doi:10.1007/s12247-022-09619-z.
  • Srivastava BBL, Ripanda AS, Mwanga HM. Ethnomedicinal, phytochemistry and antiviral potential of turmeric (curcuma longa). Comp. 2022;2(3):200–221. doi:10.3390/compounds2030017.
  • Kotian V, Koland M, Mutalik S. Nanocrystal-based topical gels for improving wound healing efficacy of curcumin. Crystals. 2022;12(11):1565. doi:10.3390/cryst12111565.
  • Ardeshirzadeh A, Ahmadi H, Mirzaei M, Omidi H, Mostafavinia A, Amini A, Bayat S, Fridoni M, Chien S, Bayat M. The combined use of photobiomodulation and curcumin-loaded iron oxide nanoparticles significantly improved wound healing in diabetic rats compared to either treatment alone. Lasers Med Sci. 2022;37(9):3601–3611. doi:10.1007/s10103-022-03639-4.
  • Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res. 2023;33(1):53–64. doi:10.1080/08982104.2022.2086567.
  • Sohn SI, Priya A, Balasubramaniam B, Muthuramalingam P, Sivasankar C, Selvaraj A. Biomedical applications and bioavailability of curcumin-an updated overview. Pharmaceutics. 2021;13(12):2102. doi:10.3390/pharmaceutics13122102.
  • Wang S, Tan M, Zhong Z, Chen M, Wang Y. Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. J Nanomater. 2011;2011:51. doi:10.1155/2011/723178.
  • Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GE-S, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin nanoparticles as promising therapeutic agents for drug targets. Mol. 2021;26(16):4998. doi:10.3390/molecules26164998.
  • Singh R, JW L Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223. doi:10.1016/j.yexmp.2008.12.004.
  • Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2018;92:1016–1030. doi:10.1016/j.msec.2018.02.006.
  • Dang LH, Nguyen TH, Tran HLB, Doan VN, Tran NQ. Injectable nanocurcumin-formulated chitosan-g-pluronic hydrogel exhibiting a great potential for burn treatment. J Healthc Eng. 2018;2018:5754890. doi:10.1155/2018/5754890.
  • Kebede BH, Forsido SF, Tola YB, Astatkie T. Free radical scavenging capacity, antibacterial activity and essential oil composition of turmeric (Curcuma domestica) varieties grown in Ethiopia. Heliyon. 2021;7(2):e06239. doi:10.1016/j.heliyon.2021.e06239.
  • Alemzadeh E, Oryan A. Effectiveness of a Crocus sativus extract on burn wounds in rats. Planta Med. 2018;84(16):1191–1200. doi:10.1055/a-0631-3620.
  • Oryan A, Moshiri A, Meimandiparizi AH. Effects of sodium-hyaluronate and glucosamine-chondroitin sulfate on remodeling stage of tenotomized superficial digital flexor tendon in rabbits: a clinical, histopathological, ultrastructural, and biomechanical study. Connect Tissue Res. 2011;52(4):329–339. doi:10.3109/03008207.2010.531332.
  • Oryan A, Goodship AE, Silver IA. Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan). Connect Tissue Res. 2008;49(5):351–360. doi:10.1080/03008200802325169.
  • Oryan A, Khalafi-Nezhad A, Toloo N, Soltani Rad MN. Effects of 4-chloro-2,6-bis-(2-hydroxyl-benzyl)-phenol on healing of skin wounds and growth of bacteria. J Vet Med A Physiol Pathol Clin Med. 2007;54(10):585–591. doi:10.1111/j.1439-0442.2007.00984.x.
  • Oryan A, Tabatabaei Naeini A, Moshiri A, Mohammadalipour A, Tabandeh MR. Modulation of cutaneous wound healing by silymarin in rats. J Wound Care. 2012;21(9):457–464. doi:10.12968/jowc.2012.21.9.457.
  • Oryan A, Zaker SR. Effects of topical application of honey on cutaneous wound healing in rabbits. Zentralbl Veterinarmed A. 1998;45(3):181–188. doi:10.1111/j.1439-0442.1998.tb00815.x.
  • Schencke C, Vasconcellos A, Sandoval C, Torres P, Acevedo F, Del Sol M. Morphometric evaluation of wound healing in burns treated with Ulmo (Eucryphia cordifolia) honey alone and supplemented with ascorbic acid in guinea pig (Cavia porcellus). Burns & Trauma. 2016 3;4: 25. doi:10.1186/s41038-016-0050-z.
  • Oryan A, Silver IA, Goodship AE. Effects of a serotonin S2-receptor blocker on healing of acute and chronic tendon injuries. J Invest Surg. 2009;22(4):246–255. doi:10.1080/08941930903040114.
  • Oryan A, Mohammadalipour A, Moshiri A, Tabandeh MR. Avocado/Soybean unsaponifiables: a novel regulator of cutaneous wound healing, modelling and remodelling. Int Wound J. 2015;12(6):674–685. doi:10.1111/iwj.12196.
  • Scharstuhl A, Mutsaers HA, Pennings SW, Szarek WA, Russel FG, Wagener FA. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation. J Cell Mol Med. 2009;13(4):712–725. doi:10.1111/j.1582-4934.2008.00339.x.
  • Gabr SA, Elsaed WM, Eladl MA, El-Sherbiny M, Ebrahim HA, Asseri SM, Eltahir YAM, Elsherbiny N, Eldesoqui M. Curcumin modulates oxidative stress, fibrosis, and apoptosis in drug-resistant cancer cell lines. Life (Basel). 2022;12(9):1427. doi:10.3390/life12091427.
  • Topman G, Shoham N, Sharabani-Yosef O, Lin FH, Gefen A. A new technique for studying directional cell migration in a hydrogel-based three-dimensional matrix for tissue engineering model systems. Micron. 2013;51:9–12. doi:10.1016/j.micron.2013.06.002.
  • Barzegar A, Moosavi-Movahedi AA, Calixto JB. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One. 2011;6(10):e26012. doi:10.1371/journal.pone.0026012.
  • Al-Jawad FH, Sahib AS, Al-Kaisy AA. Role of antioxidants in the treatment of burn lesions. Ann Burns Fire Disasters. 2008;21(4):186–191. doi:10.1016/j.burns.2009.06.126.
  • Dahlgren C, Karlsson A, Bylund J. Intracellular neutrophil oxidants: from laboratory curiosity to clinical reality. J Immunol. 2019;202(11):3127–3134. doi:10.4049/jimmunol.1900235.
  • Cho JW, Lee KS, Kim CW. Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med. 2007;19(3):469–474. doi:10.3892/ijmm.19.3.469.
  • Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther. 2011;27(2):123–130. doi:10.1089/jop.2010.0123.
  • Meng B, Li J, Cao H. Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des. 2013;19(11):2101–2113. doi:10.2174/1381612811319110011.
  • Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS. Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol. 2009;36(12):1149–1156. doi:10.1111/j.1440-1681.2009.05216.x.
  • Hosseini A, Rasaie D, Soleymani Asl S, Nili Ahmadabadi A, Ranjbar A. Evaluation of the protective effects of curcumin and nanocurcumin against lung injury induced by sub-acute exposure to paraquat in rats. Toxin Rev. 2021;40(4):1233–1241. doi:10.1080/15569543.2019.1675707.
  • Sinjari B, Pizzicannella J, D’Aurora M, Zappacosta R, Gatta V, Fontana A, Trubiani O, Diomede F. Curcumin/Liposome nanotechnology as delivery platform for anti-inflammatory activities via nfkb/erk/perk pathway in human dental pulp treated with 2-hydroxyethyl methacrylate (hema). Front Physiol. 2019;10:633.
  • Hussain Y, Khan H, Alotaibi G, Khan F, Alam W, Aschner M, Jeandet P, Saso L. How curcumin targets inflammatory mediators in diabetes: therapeutic insights and possible solutions. Mol. 2022;27(13):4058. doi:10.3390/molecules27134058.
  • Agarwal Y, Rajinikanth PS, Ranjan S, Tiwari U, Balasubramnaiam J, Pandey P, Arya DK, Anand S, Deepak P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int J Biol Macromol. 2021;176:376–386.
  • Shehzad A, Ha T, Subhan F, Lee YS. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr. 2011;50(3):151–161. doi:10.1007/s00394-011-0188-1.
  • Zhang L, Tao X, Fu Q, Ge C, Li R, Li Z, Zhu Y, Tian H, Li Q, Liu M, Hu H, Zeng B, Lin Z, Li C, Luo R, Song X. Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncol Rep. 2019;42(5):1843–1855. doi:10.3892/or.2019.7278.
  • Hemmila MR, Mattar A, Taddonio MA, Arbabi S, Hamouda T, Ward PA, Wang SC, Baker JR. Topical nanoemulsion therapy reduces bacterial wound infection and inflammation after burn injury. Surgery. 2010;148(3):499–509. doi:10.1016/j.surg.2010.01.001.
  • Basit HM, Mohd Amin MCI, Ng SF, Katas H, Shah SU, Khan NR. Formulation and evaluation of microwave-modified chitosan-curcumin nanoparticles-a promising nanomaterials platform for skin tissue regeneration applications following burn wounds. Polym (Basel). 2020;12(11):2608. doi:10.3390/polym12112608.
  • Shariati A, Asadian E, Fallah F, Azimi T, Hashemi A, Yasbolaghi Sharahi J, Taati Moghadam M. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect Drug Resist. 2019;12:2223–2235. 10.2147/IDR.S213200.
  • Bhawana BR, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011;59(5):2056–2061. doi:10.1021/jf104402t.
  • Gailit J, Welch MP, Clark RA. TGF-beta 1 stimulates expression of keratinocyte integrins during re-epithelialization of cutaneous wounds. J Invest Dermatol. 1994;103(2):221–227. doi:10.1111/1523-1747.ep12393176.
  • Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle). 2014;3(7):445–464. doi:10.1089/wound.2013.0473.
  • Krampert M, Bloch W, Sasaki T, Bugnon P, Rülicke T, Wolf E, Aumailley M, Parks WC, Werner S. Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell. 2004;15(12):5242–5254. doi:10.1091/mbc.e04-02-0109.
  • Goel A, Shrivastava P. Post-burn scars and scar contractures. Indian J Plast Surg. 2010;43(Suppl):S63–71. doi:10.4103/0970-0358.70724.
  • Wagner W, Wehrmann M. Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin. J Cell Mol Med. 2007;11(6):1342–1351. doi:10.1111/j.1582-4934.2007.00037.x.
  • Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–207. doi:10.1016/s0165-6147(00)01676-x.
  • Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J Tissue Viability. 2016;25(2):98–118. doi:10.1016/j.jtv.2015.12.002.
  • Talwar T, Srivastava MV. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Ann Indian Acad Neurol. 2014;17(1):1–6. doi:10.4103/0972-2327.128519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.