214
Views
34
CrossRef citations to date
0
Altmetric
Articles

Rhein, the metabolite of diacerhein, reduces the proliferation of osteoarthritic chondrocytes and synoviocytes without inducing apoptosis

, , , , , , , & show all
Pages 104-111 | Accepted 20 Aug 2008, Published online: 12 Jul 2009

References

  • Pelletier J. P., Martel‐Pelletier J., Howell D. S. Etiopathogenesis of osteoarthritis. Arthritis and allied conditions. A textbook of rheumatology, vol. 2, 14th edn, W. J Koopman. Williams and Wilkins, Baltimore 2001; 2195–245
  • Pujol J. P., Loyau G. Interleukin‐1 and osteoarthritis. Life Sci 1987; 41: 1187–98
  • Shinmei M., Masuda K., Kikuchi T., Shimormura Y. The role of cytokines in chondrocyte mediated cartilage degradation. J Rheumatol Suppl 1989; 18: 32–4
  • Sandy J. D. A contentious issue finds some clarity: on the independent and complementarity roles of aggrecanase activity and MMP activity in human joint aggrecanolysis. Osteoarthritis Cart 2006; 14: 95–100
  • Goldring M. B., Birkead L., Sandell L. J., Kimura T., Krane S. M. Interleukin‐1 suppresses expression of cartilage specific type II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 1988; 82: 2026–37
  • Chadjichristos C., Ghayor C., Kypriotou M., Martin G., Renard E., Alla‐Koko L., et al. Sp1 and Sp3 transcription factors mediate interleukin‐1β down‐regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem 2003; 278: 39762–72
  • Benton H. P., Tyler J. A. Inhibition of cartilage proteoglycan synthesis by interleukin‐1. Biochem Biophys Res Commun 1988; 154: 421–8
  • Blanco F. J., Guitian R., Vazquez‐Martul E., De Toro F. J., Galdo F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 1998; 41: 284–9
  • Aigner T., Hemmel M., Neureiter D., Gebhard P. M., Zeiler G., Kirchner T., et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001; 44: 1304–12
  • Adams M. E., Brandt K. D. Hypertrophic repair of canine articular cartilage in osteoarthritis after anterior cruciate ligament transection. J Rheumatol 1991; 18: 428–35
  • Pelletier J. P., Martel‐Pelletier J., Abramson S. B. Osteoarthritis, an inflammatory disease. Potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001; 44: 1237–47
  • Hedbom E., Hauselmann H. J. Molecular aspects of pathogenesis in osteoarthritis: the role of inflammation. Cell Mol Life Sci 2002; 59: 45–53
  • Benito M. J., Veale D. J., Fitzgerald O., Van Den Berg W. B., Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 2005; 64: 1263–7
  • Jenkins J. J., Hardy K. J., McMurray R. W. The pathogenesis of rheumatoid arthritis: a guide to therapy. Am J Med Sci 2002; 323: 171–80
  • Davis L. S. A question of transformation. The synovial fibroblast in rheumatoid arthritis. Am J Pathol 2003; 162: 1399–402
  • Lingetti M., D'Ambrosio P. L., Di Grezia F., Sorrentino P., Lingetti E. A. Controlled study in the treatment of osteoarthritis with diacerhein (Artrodar). Curr Ther Res 1982; 31: 408–12
  • Marcolongo R., Fioravanti A., Adami S., Tozzi E., Mian M., Zampieri A. Efficacy and tolerability of diacerhein in the treatment of osteoarthrosis. Curr Ther Res 1988; 43: 878–87
  • Nguyen M., Dougados M., Berdah L., Amor B. Diacerhein in the treatment of osteoarthritis of the hip. Arthritis Rheum 1994; 37: 529–36
  • Pelletier J. P., Yaron M., Haraoui B., Cohen P., Nahir M. A., Choquette D., et al. Efficacy and safety of diacerein in osteoarthritis of the knee: a double‐blind, placebo‐controlled trial. Arthritis Rheum 2000; 43: 2339–48
  • Dougados M., Nguyen M., Berdah L., Mazieres B., Vignon E., Lequesne M. ECHODIAH Investigators Study Group: evaluation of the structure‐modifying effects of diacerein in hip osteoarthritis. Arthritis Rheum 2001; 44: 2539–47
  • Brandt K. D., Smith G., Kang S. Y., Myers S., O'Connor B., Albrecht M. Effects of diacerhein in an accelerated canine model of osteoarthritis. Osteoarthritis Cart 1997; 5: 438–49
  • Hwa S. Y., Burkhardt D., Little C., Ghosh P. The effect of orally administered diacerein on cartilage and subchondral bone in an ovine model of osteoarthritis. J Rheumatol 2001; 28: 825–34
  • Smith G. N., Myers S. L., Brandt K. D., Mickler E. A., Albrecht M. E. Diacerhein treatment reduces the severity of osteoarthritis in the canine cruciate‐deficiency model of osteoarthritis. Arthritis Rheum 1999; 42: 545–54
  • Tamura T., Ohmori K. Diacerein suppresses the increase in plasma nitric oxide in rat adjuvant‐induced arthritis. Eur J Pharmacol 2001; 419: 269–74
  • Pomarelli P., Berti M., Gatti, Mosconi P. A non‐steroidal anti‐inflammatory drug that stimulates prostaglandin release. Farmaco 1980; 35: 836–42
  • Franchi‐Micheli S., Lavacchi L., Friedmann C. A., Ziletti Z. The influence of rhein on the biosynthesis of prostaglandin‐like substances in vitro. J Pharm Pharmacol 1983; 35: 262–4
  • Pujol J. P., Félisaz N., Boumediene K., Boumediene K., Ghaor C., Herrouin J. F., et al. Effects of diacerhein on biosynthesis activities of chondrocytes in culture. Biorheology 2000; 37: 177–84
  • Yaron M., Shirazi I., Yaron I. Anti‐interleukin‐1 effects of diacerhein and rhein in human osteoarthritic synovial tissue and cartilage cultures. Osteoarthritis Cart 1999; 7: 272–80
  • Sanchez C., Mathy‐Hartert, Deberg M. A., Ficheux H., Reginster J. ‐Y. L., Henrotin Y. E. Effects of rhein on human articular chondrocytes in alginate beads. Biochem Pharmacol 2003; 65: 377–88
  • Martin G., Bogdanowicz P., Domagala F., Ficheux H., Pujol J. P. Rhein inhibits interleukin‐1‐induced activation of MEK/ERK pathway and DNA binding of NF‐κB and AP‐1 in chondrocytes cultured in hypoxia: a potential mechanism for its disease‐modifying effect in osteoarthritis. Inflammation 2003; 27: 233–46
  • Legendre F., Bogdanowicz P., Martin G., Domagala F., Leclercq S., Pujol J. ‐P., et al. Rhein, a diacerhein‐derived metabolite, modulates the expression of matrix degrading enzymes and the cell proliferation of articular chondrocytes by inhibiting ERK and JNK‐AP‐1 dependent pathways. Clin Exp Rheum 2007; 25: 546–55
  • Félisaz N., Boumediene K., Ghayor C., Herrouin J. F., Bogdanowicz P., Galéra P., et al. Stimulating effect of diacerein on TGF‐β1 and β2 expression in articular chondrocytes cultured with and without interleukin‐1. Osteoarthritis Cart 1999; 7: 255–67
  • Rédini F., Galéra P., Mauviel A., Loyau G., Pujol J. P. Transforming growth factor‐β stimulated collagen and glycosaminoglycan biosynthesis in cultured rabbit chondrocytes. FEBS Lett 1988; 234: 172–6
  • Pelletier J. P., Mineau F., Ferandes J. C., Duval N., Martel‐Pelletier J. Diacerhein and rhein reduce the interleukin‐1β stimulated inducible nitric oxide synthesis level and activity while stimulating cyclooxygenase‐2 synthesis in human osteoarthritic chondrocytes. J Rheumatol 1998; 25: 2417–24
  • Castiglione S., Fanciulli M., Bruno T., Evangelista M., Del Carlo C., Paggi M. G., et al. Rhein inhibits glucose uptake in Ehrlich ascites tumor cells by alteration of membrane‐associated functions. Anticancer Drugs 1993; 4: 407–14
  • Delpino A., Paggi M. g., Gentile P. F., Castiglione S., Bruno T., Benass M., et al. Protein synthetic activity and adenylate energy charge in rhein‐treated cultured human glioma cells. Cancer Biochem Biophys 1992; 12: 241–52
  • Vuolteenaho K., Kujala P., Moilanen T., Moilanen E. Authiomalate and hydroxychloroquine inhibit nitric oxide production in chondrocytes and in human osteoarthritic cartilage. Scand J Rheumatol 2005; 34: 475–9
  • Deng C., Zhang P., Harper J. W., Elledge S. J., Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82: 675–84
  • Stewart M. C., Farnum C. E., Macleod J. N. Expression of p21CIP1/WAF1 in chondrocytes. Calcif Tissue Int 1997; 61: 199–204
  • Aikawa T., Segre G. V., Lee K. Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E/Cdk2. J Biol Chem 2001; 276: 29347–52
  • Beier F., Taylor A. C., Luvalle P. The Raf‐1/MEK/ERK pathway regulates the expression of the p21 (Cip1/Waf1) gene in chondrocytes. J Biol Chem 1999; 274: 30273–9
  • Asahara H., Fujisawa K., Kobata T., Hasunuma T., Maeda T., Asanuma M., et al. Direct evidence of high DNA binding activity of transcription factor AP‐1 in rheumatoid arthritis synovium. Arthritis Rheum 1997; 40: 912–18
  • Tak P. P., Gerlag D. M., Aupperle K. R., van de Geest D. A., Overbeek M., Bennett B. L., et al. Inhibitor of nuclear factor κB kinase beta is a key regulator of synovial inflammation. Arthritis Rheum 2001; 44: 1897–907
  • Pap T., Aupperle K. R., Gay S., Firestein G. S., Gay R. E. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum 2001; 44: 676–81
  • Yamanishi Y., Boyle D. L., Pinkoski M. J., Mahoubi A., Lin T., Han Z., et al. Regulation of joint destruction and inflammation by p53 in collagen‐induced arthritis. Am J Pathol 2002; 160: 123–30
  • Miccadei S., Pulselli R., Floridi A. Effect of ionidamine and rhein on the phosphorylation potential generated by respiring rat liver mitochondria. Anticancer Res 1993; 13: 1507–10
  • Mankin H. J., Dorfman H., Lipiello L., Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 1971; 53: 523–37
  • Halevy O., Novitch B. G., Spicer D. B., Skapek S. X., Rhee J., Hannon G. J., et al. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 1995; 267: 1018–21
  • Missero C., Calautti E., Eckner R., Chin J., Tsai L. H., Livingston D. M., et al. Involvement of cell‐cycle inhibitor Cip1/Waf1 and E1A‐associated p300 protein in terminal differentiation. Proc Natl Acad Sci USA 1995; 92: 5451–5
  • Evers B. M., Tien C. K., Jing L., Thompson E. A. Cell cycle protein suppression and p21 induction in differentiation of Caco‐2 cells. Am J Physiol 1996; 271: G722–7
  • Arends M. J., Wyllie A. H. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol 1991; 32: 223–54
  • Thornberry N. A., Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–16
  • Pelletier J. P., Mineau F., Boileau C., Martel‐Pelletier J. Diacerein reduces the level of cartilage chondrocyte DNA fragmentation and death in experimental dog osteoarthritic cartilage at the same time that it inhibits caspase‐3 and inducible nitric oxide synthase. Clin Exp Rheumatol 2003; 21: 171–7
  • Fernandes F. A., Pucinelli M. L., da Silva N. P., Feldman D. Serum cartilage oligomeric matrix protein (COMP) levels in knee osteoarthritis in a Brazilian population: clinical and radiological correlation. Scand J Rheumatol 2007; 36: 211–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.