267
Views
7
CrossRef citations to date
0
Altmetric
Research Papers

Candidate gene variant effects on language disorders in Robinson Crusoe Island

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 109-119 | Received 17 Jan 2019, Accepted 20 Mar 2019, Published online: 19 Jun 2019

References

  • Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, et al. 2008. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 82:150–159.
  • Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, et al. 2008. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet. 82:160–164.
  • Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, Chawarska K, et al. 2008. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet. 82:165–173.
  • Barry JG, Yasin I, Bishop D. 2007. Heritable risk factors associated with language impairments. Genes Brain Behav. 6:66–76.
  • Bishop DVM, Adams CV, Norbury CF. 2006. Distinct genetic influences on grammar and phonological short‐term memory deficits: evidence from 6‐year‐old twins. Genes Brain Behav. 5:158–169.
  • Bishop DVM, Snowling MJ, Thompson PA, Greenhalgh T, Catalise-consortium T. 2017. Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J Child Psychol Psychiatry 58:1068–1080.
  • Burgemeister B, Blue L, Lorge I. 1998. Escala de madurez mental de Columbia. Madrid (Spain). Publicaciones de Psicología Asociada.
  • Carvill GL, Regan BM, Yendle SC, O'Roak BJ, Lozovaya N, Bruneau N, Burnashev N, et al. 2013. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 45:1073–1076.
  • Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, Newbury DF, Fisher SE. 2017. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci Rep. 7:46105. eng.
  • Conti-Ramsden G, Botting N. 2008. Emotional health in adolescents with and without a history of specific language impairment (SLI). J Child Psychol Psychiatry. 49:516–525.
  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156–2158.
  • De Barbieri Z, Fernández MA, Newbury DF, Villanueva P. 2018. Family aggregation of language impairment in an isolated Chilean population from Robinson Crusoe Island. Int J Lang Commun Disord 53:643–655.
  • De Renzi A, Vignolo LA. 1962. Token test: A sensitive test to detect receptive disturbances in aphasics. Brain. 85:665–678.
  • Deriziotis P, Fisher SE. 2017. Speech and language: Translating the genome. Trends Genet. 33:642–656.
  • Devanna P, Chen XS, Ho J, Gajewski D, Smith SD, Gialluisi A, Francks C, et al. 2017. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol Psychiatry. 23:1375–1384.
  • Eising E, Carrion-Castillo A, Vino A, Strand EA, Jakielski KJ, Scerri TS, Hildebrand MS, et al. 2018. A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol. Psychiatry. 1–14. https://doi.org/10.1038/s41380-018-0020-x.
  • Endele S, Rosenberger G, Geider K, Popp B, Tamer C, Stefanova I, Milh M, et al. 2010. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 42:1021–1026.
  • Hulme C, Snowling MJ. 2009. Developmental disorders of language learning and cognition. Oxford: John Wiley & Sons.
  • Kornilov SA, Rakhlin N, Koposov R, Lee M, Yrigollen C, Caglayan AO, Magnuson JS, et al. 2016. Genome-wide association and exome sequencing study of language disorder in an isolated population. Pediatrics 137:e20152469.
  • Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523.
  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291.
  • Liegeois FJ, Hildebrand MS, Bonthrone A, Turner SJ, Scheffer IE, Bahlo M, Connelly A, Morgan AT. 2016. Early neuroimaging markers of FOXP2 intragenic deletion. Sci Rep. 6:35192
  • MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, Vargha-Khadem F, et al. 2005. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet. 76:1074–1080.
  • Moralli D, Nudel R, Chan MTM, Green CM, Volpi EV, Benítez-Burraco A, Newbury DF, García-Bellido P. 2015. Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2. Mol Cytogenet. 8:36.
  • Mountford HS, Newbury DF. 2018. The genomic landscape of language: Insights into evolution. J Lang Evol. 3:49–58.
  • Norbury CF, Gooch D, Wray C, Baird G, Charman T, Simonoff E, Vamvakas G, Pickles A. 2016. The impact of nonverbal ability on prevalence and clinical presentation of language disorder: evidence from a population study. J Child Psychol Psychiatry. 57:1247–1257.
  • Pavez G, Maggiolo M, Coloma T, González M. 2008. Test para evaluar procesos de simplificación fonológica: TEPROSIF-R. Santiago (Chile): Ediciones Universidad Católica de Chile.
  • Pavez MM. 2003. Test exploratorio de gramática española de A. Toronto Aplicación en Chile Santiago: Ediciones Universidad católica de Chile.
  • Peña-Casanova J, Guardia J, Bertran-Serra I, Manero R, Jarne A. 1997. [Shortened version of the Barcelona test (I): subtests and normal profiles]. Neurologia 12:99–111.
  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 81:559–575.
  • Raven J. 2003. Raven progressive matrices. Handbook of nonverbal assessment. Boston (MA): Springer; p. 223–237.
  • Reuter MS, Riess A, Moog U, Briggs TA, Chandler KE, Rauch A, Stampfer M, et al. 2017. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet. 54:64–72.
  • Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, Consortium WGS, Wilkie AO, et al. 2014. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 46:912–918.
  • Snijders Blok L, Rousseau J, Twist J, Ehresmann S, Takaku M, Venselaar H, Rodan LH, et al. 2018. CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nat Commun. 9:4619. eng.
  • Stromswold K. 1998. Genetics of spoken language disorders. Hum Biol. 70:297–324.
  • Thevenon J, Callier P, Andrieux J, Delobel B, David A, Sukno S, Minot D, et al. 2013. 12p13. 33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur J Hum Genet. 21:82.
  • Tomblin JB, O'Brien M, Shriberg LD, Williams C, Murray J, Patil S, Bjork J, et al. 2009. Language features in a mother and daughter of a chromosome 7;13 translocation involving FOXP2. J Speech Lang Hear Res. 52:1157–1174.
  • Turner SJ, Hildebrand MS, Block S, Damiano J, Fahey M, Reilly S, Bahlo M, et al. 2013. Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria. Am J Med Genet Part A 161:2321–2326.
  • Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy‐Moonshine A, Jordan T, et al. 2013. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.10.33.
  • Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcon M, et al. 2008. A functional genetic link between distinct developmental language disorders. N Engl J Med 359:2337–2345.
  • Villanueva P, de Barbieri Z, Palomino HM, Palomino H. 2008. [High prevalence of specific language impairment in Robinson Crusoe Island. A possible founder effect]. Rev Med Chil. 136:186–192.
  • Villanueva P, Fernandez MA, De Barbieri Z, Palomino H. 2014. Consanguinity on Robinson Crusoe Island, an isolated Chilean population. J Biosoc Sci. 46:546–555.
  • Villanueva P, Newbury DF, Jara L, De Barbieri Z, Mirza G, Palomino HM, Fernandez MA, et al. 2011. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population. Eur J Hum Genet. 19:687–695.
  • Villanueva P, Nudel R, Hoischen A, Fernandez MA, Simpson NH, Gilissen C, Reader RH, et al. 2015. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment. PLoS Genet. 11:e1004925.
  • Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:e164
  • Wiszniewski W, Hunter JV, Hanchard NA, Willer JR, Shaw C, Tian Q, Illner A, et al. 2013. TM4SF20 ancestral deletion and susceptibility to a pediatric disorder of early language delay and cerebral white matter hyperintensities. Am J Hum Genet. 93:197–210.
  • Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. 2016. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32:1423–1426.
  • Zweier C, de Jong EK, Zweier M, Orrico A, Ousager LB, Collins AL, Bijlsma EK, et al. 2009. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet. 85:655–666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.