Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 3
404
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of magnesium addition in low carbon steel part 2: toughness and microstructure of the simulated coarse-grained heat-affected zone

, , , &
Pages 301-311 | Received 03 Mar 2017, Accepted 26 Jul 2017, Published online: 04 Oct 2017

References

  • Mizoguchi S, Takamura J. Control of oxides as inoculants. Proc 6th Int Iron Steel Cong ISIJ, Nagoya; 1990. p. 598–604.
  • Takamura J, Mizoguchi S. Role of oxides in steels performance, metallurgy of oxides in steels. Proc 6th Int Iron Steel Cong ISIJ, Nagoya; 1990. p. 591–597.
  • Babu SS. The mechanism of acicular ferrite in weld deposits. Curr Opin Solid St Mater Sci. 2004;8(3–4):267–278. doi: 10.1016/j.cossms.2004.10.001
  • Byun JS, Shim JH, Cho YW, et al. Non-metallic inclusion and intra-granular nucleation of ferrite in Ti-killed C–Mn steel. Acta Mater. 2003;51(6):1593–1606. doi: 10.1016/S1359-6454(02)00560-8
  • Wan XL, Wei R, Wu KM. Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone. Mater Charact. 2010;61(7):726–731. doi: 10.1016/j.matchar.2010.04.004
  • Li XB, Min Y, Liu CJ, et al. Effect of Mg addition on the characterization of γ-α phase transformation during continuous cooling in low carbon steel. Steel Res Int. 2015;86(12):1530–1540. doi: 10.1002/srin.201400517
  • Li XB, Min Y, Liu CJ, et al. Study on the formation of intragranular acicular ferrite in a Zr–Mg–Al deoxidized low carbon steel. Steel Res Int. 2016;87(5):622–632. doi: 10.1002/srin.201500167
  • Abson DJ, Pargeter RJ. Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C–Mn steel fabrications. Int Metal Rev. 1986;31(1):141–196. doi: 10.1179/imr.1986.31.1.141
  • Farrar RA, Harrison PL. Acicular ferrite in carbon-manganese weld metals: an overview. J Mater Sci. 1987;22(11):3812–3820. doi: 10.1007/BF01133327
  • Koseki T, Thewlis G. Overview inclusion assisted microstructure control in C-Mn and low alloy steel welds. Mater Sci Technol. 2005;21(8):867–879. doi: 10.1179/174328405X51703
  • Shim JH, Cho YW, Chung SH, et al. Nucleation of intra-granular ferrite at Ti2O3 particle in low carbon steel. Acta Mater. 1999;47(9):2751–2760. doi: 10.1016/S1359-6454(99)00114-7
  • Jin HH, Shim JH, Cho YW, et al. Formation of intragranular acicular ferrite grains in a Ti-containing low carbon steel. ISIJ Int. 2003;43(7):1111–1113. doi: 10.2355/isijinternational.43.1111
  • Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Technical Report. 2004;90:2–6.
  • Chai F, Yang CF, Su H, et al. Effect of magnesium on inclusion formation in Ti-killed steels and micro-structural evolution in welding induced coarse-grained heat affected zone. J Iron Steel Res Int. 2009;16(1):69–74. doi: 10.1016/S1006-706X(09)60013-3
  • Zhu K, Yang ZG. Effect of Mg addition on the ferrite grain boundaries misorientation in HAZ of low carbon steels. J Mater Sci Technol. 2011;27(3):252–256. doi: 10.1016/S1005-0302(11)60058-3
  • Zhu K, Yang J, Wang RZ, et al. Effect of Mg addition on inhibiting austenite grain growth in heat affected zones of Ti-bearing low carbon steels. J Iron Steel Res Int. 2011;18(9):60–64. doi: 10.1016/S1006-706X(12)60035-1
  • Zhu K, Yang ZG. Effect of magnesium on the austenite grain growth of the heat-affected zone in low-carbon high-strength steels. Metall Mater Trans A. 2011;42(8):2207–2213. doi: 10.1007/s11661-011-0647-6
  • Yang J, Xu LY, Zhu K, et al. Improvement of HAZ toughness of steel plate for high heat input welding by inclusion control with Mg deoxidation. Steel Res Int. 2015;86(6):619–625. doi: 10.1002/srin.201400313
  • Seo CW, Kim SH, Jo SK, et al. Modification and minimization of spinel (Al2O3·xMgO) inclusions formed in Ti-added steel melts. Metall Mater Trans B. 2010;41:790–797. doi: 10.1007/s11663-010-9377-1
  • Yang SF, Wang QQ, Zhang LF, et al. Formation and modification of MgO·Al2O3-based inclusions in alloy steels. Metall Mater Trans B. 2012;43(4):731–750. doi: 10.1007/s11663-012-9663-1
  • Verma N, Pistorius PC, Fruehan RJ, et al. Calcium modification of spinel inclusions in aluminum-killed steel: reaction steps. Metall Mater Trans B. 2012;43(4):830–840. doi: 10.1007/s11663-012-9660-4
  • Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B. 2001;32(1):79–85. doi: 10.1007/s11663-001-0010-1
  • Ohta H, Suito H. Characteristics of particles size distribution of deoxidation products with Mg,Zr,Al,Ca,Si/Mn and Mg/Al in Fe-10mass%Ni alloy. ISIJ Int. 2006;46(1):14–21. doi: 10.2355/isijinternational.46.14
  • Yang J, Yamasaki T, Kuwabara M. Behavior of inclusions in deoxidation process of molten steel with in situ produced Mg vapor. ISIJ Int. 2007;47(5):699–708. doi: 10.2355/isijinternational.47.699
  • Takata R, Yang J, Kuwabara M. Characteristics of inclusions generated during Al–Mg complex deoxidation of molten steel. ISIJ Int. 2007;47(10):1379–1386. doi: 10.2355/isijinternational.47.1379
  • Li XB, Min Y, Liu CJ, et al. Influence of zirconium on mechanical properties and phase transformation in low carbon steel. Mater Sci Technol. 2016;32(5):454–462. doi: 10.1179/1743284715Y.0000000110
  • Koseki T, Ohkita S, Yurioka N. Thermodynamic study of inclusion formation in low alloy steel weld metals. Sci Technol Weld Joining. 1997;2(2):65–69. doi: 10.1179/stw.1997.2.2.65
  • Ichikawa K, Koseki T, Fuji M. Thermodynamic estimation of inclusion characteristics in low alloy steel weld metals. Sci Technol Weld Joining. 1997;2(5):231–235. doi: 10.1179/stw.1997.2.5.231
  • Mu W, Jönsson PG, Nakajima K. Effect of sulfur content on inclusion and microstructure characteristics in steels with Ti2O3 and TiO2 additions. ISIJ Int. 2014;54(12):2907–2916. doi: 10.2355/isijinternational.54.2907
  • Mu W, Jönsson PG, Shibata H, et al. Inclusion and microstructure characteristics in steels with TiN additions. Steel Res Int. 2016;87(3):339–348. doi: 10.1002/srin.201500061
  • Sundman B, Shi P, Bratberg J. TCS steels/Fe-alloys database version 7.0. Sweden: Thermo-Calc Software AB; 2012.
  • Feng YY, Luo ZA, Zhang DH, et al. The application of welding heat cycle computer software. Mater Sci Forum. 2008;575–578:821–826.
  • Li XB, Min Y, Yu Z, et al. Effect of Mg addition on the nucleation of intragranular acicular ferrite in Al-killed low carbon steel. J Iron Steel Res Int. 2016;23(5):415–421. doi: 10.1016/S1006-706X(16)30066-8
  • Park JS, Park JH. Effect of Mg-Ti deoxidation on the formation behavior of equiaxed crystals during rapid solidification of iron alloys. Steel Res Int. 2014;85(8):1303–1309. doi: 10.1002/srin.201300203
  • Isobe K. Effect of Mg addition on solidification structure of low carbon steel. ISIJ Int. 2010;50(12):1972–1980. doi: 10.2355/isijinternational.50.1972
  • Krauss G, Thompson SW. Ferritic microstructure in continuously called low- and ultralow-carbon steels. ISIJ Int. 1995;35(8):937–945. doi: 10.2355/isijinternational.35.937
  • Sarma DS, Karasev AV, Jönsson PG. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int. 2009;49(7):1063–1074. doi: 10.2355/isijinternational.49.1063
  • Shim JH, Oh YJ, Suh JY, et al. Ferrite nucleation potency of non-metallic inclusions in medium carbon steels. Acta Mater. 2001;49(12):2115–2122. doi: 10.1016/S1359-6454(01)00134-3
  • Shim JH, Cho YW, Shim JD, et al. Effects of Si and Al on acicular ferrite formation in C-Mn steel. Metall Mater A. 2001;32(1):75–83. doi: 10.1007/s11661-001-0103-0
  • Yang ZB, Wang FM, Wang S, et al. Intragranular ferrite formation mechanism and mechanical properties of non-quenched-and-tempered medium carbon steels. Steel Res Int. 2008;79(5):390–395. doi: 10.1002/srin.200806143
  • Wu KM, Yokomizo T, Enomoto M. Three-dimensional morphology and growth kinetics of intragranular ferrite idiomorphs formed in association with inclusions in an Fe-C-Mn alloy. ISIJ Int. 2002;42(10):1144–1149. doi: 10.2355/isijinternational.42.1144
  • Enomoto M, Wu KM, Inagawa Y, et al. Three-dimensional observation of ferrite plate in low carbon steel weld. ISIJ Int. 2005;45(5):756–762. doi: 10.2355/isijinternational.45.756
  • Wu KM. Three-dimensional analysis of acicular ferrite in a low-carbon steel containing titanium. Scr Mater. 2006;54(4):569–574. doi: 10.1016/j.scriptamat.2005.10.054
  • Cheng L, Wu KM. New insights into intragranular ferrite in a low-carbon low-alloy steel. Acta Mater. 2009;57(13):3754–3762. doi: 10.1016/j.actamat.2009.04.045
  • Baker TN. Role of zirconium in microalloyed steels a review. Mater Sci Technol. 2015;31(3):265–294. doi: 10.1179/1743284714Y.0000000549
  • Shi MH, Zhang PY, Zhu FX. Toughness and microstructure of coarse grain heat affected zone with high heat input welding in Zr-bearing low carbon steel. ISIJ Int. 2014;54(1):188–192. doi: 10.2355/isijinternational.54.188
  • Manohar PA, Ferry M, Chandra T. Five decades of the Zener equation. ISIJ Int. 1998;38(9):913–924. doi: 10.2355/isijinternational.38.913
  • Li XB, Min Y, Liu CJ, et al. Effect of magnesium addition in low carbon steel part 1: behavior of austenite grain growth. Ironmak Steelmak: 1–9. doi: 10.1080/03019233.2017.1368953
  • Chen JX. Common use chart and thermodynamic data for steelmaking. Beijing: Metallurgical Industry Press; 2010.
  • Sun WS, Ding GR, Fu J, et al. Effect of Mg in 35CrNi3MoV steel. Ordnance Mater Sci Eng. 1997;20(4):3–8.
  • Li YQ, Chen GS, Zhang JF, et al. Effect of trace elements on the grain boundaries in some superalloys. Prog Nat Sci. 2000;10:331–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.