Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 8
220
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mn, Si and Ti in cast stainless steel at elevated temperature

, &
Pages 731-741 | Received 12 Apr 2017, Accepted 12 Nov 2017, Published online: 30 Nov 2017

References

  • ASM International. ASM specialty handbook: heat-resistant materials. Ohio: Materials Park; 1997
  • Evans HE. Stress effects in high temperature oxidation of metals. Int Mater Rev. 1995;40:1–40. doi: 10.1179/imr.1995.40.1.1
  • Galerie A, Toscan F, Dupeux M, et al. Stress and adhesion of chromia-rich scales on ferritic stainless steels in relation with spallation. Mater Res. 2004;7:81–88. doi: 10.1590/S1516-14392004000100012
  • Young DJ. High temperature oxidation and corrosion of metals. Oxford: Elsevier; 2008.
  • Evans HE, Hilton DA, Holm RA, et al. Influence of silicon additions on the oxidation resistance of a stainless steel. Oxid Met. 1983;19:1–18. doi: 10.1007/BF00656225
  • Bamba G, Wouters Y, Galerie A, et al. Thermal oxidation kinetics and oxide scale adhesion of Fe-15Cr alloys as a function of their silicon content. Acta Mater. 2006;54:3917–3922. doi: 10.1016/j.actamat.2006.04.023
  • Schütze M. Mechanical properties of oxide scales. Oxid Met. 1995;44:29–61. doi: 10.1007/BF01046722
  • Hakiki NE, Montemor MF, Ferreiera MGS, et al. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corros Sci. 2000;42:687–702. doi: 10.1016/S0010-938X(99)00082-7
  • Hakiki NB, Boudin S, Rondot B, et al. The electronic structure of passive films formed on stainless steels. Corros Sci. 1995;37:1809–1822. doi: 10.1016/0010-938X(95)00084-W
  • Ferreira MGS, da Cunha Belo M, Hakiki NE, et al. Semiconducting properties of oxide and passive films formed on AISI 304 stainless steel and alloy 600. J Braz Chem Soc. 2002;13:433–440.
  • Holt A, Kofstad P. Electrical conductivity and defect structure of Cr2O3. II. Reduced temperatures (< ∼1000°C). Solid State Ionics. 1994;69:137–143. doi: 10.1016/0167-2738(94)90402-2
  • Grechnyi YV, Zhak KM, Zaidman ID, et al. Microheterogeneity of silicon steel. Met Sci Heat Treat. 1968;10:396–399. doi: 10.1007/BF00650634
  • Evsyukov MF, Pritomanova MI. Effect of dendritic segregation of manganese on the transformation of austenite in steel. Met Sci Heat Treat. 1972;14:571–573. doi: 10.1007/BF00647865
  • Faulkner RG. Non-equilibrium grain-boundary segregation in austenitic alloys. J Mater Sci. 1981;16:373–383. doi: 10.1007/BF00738626
  • Sourmail T. Precipitation in creep resistant austenitic stainless steels. Mater Sci Technol. 2001;17(1):1–14. doi: 10.1179/026708301101508972
  • Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R. 2009;65:39–104. doi: 10.1016/j.mser.2009.03.001
  • Schwind M, Källqvist J, Nilsson JO, et al. σ-phase precipitation in stabilized austenitic stainless steels. Acta Mater. 2000;48:2473–2481. doi: 10.1016/S1359-6454(00)00069-0
  • Liu L, Yang Z, Zhang C, et al. Effect of grain size on the oxidation of Fe–13Cr–5Ni alloy at 973K in Ar–21vol% O2. Corros Sci. 2015;91:195–202. doi: 10.1016/j.corsci.2014.11.020
  • Peng X, Yan J, Zhou Y, et al. Effect of grain refinement on the resistance of 304 stainless steel to breakaway oxidation in wet air. Acta Mater. 2005;53:5079–5088. doi: 10.1016/j.actamat.2005.07.019
  • Wouters Y, Bamba G, Galerie A, et al. Oxygen and water vapor oxidation of 15Cr ferritic stainless steels with different silicon contents. Mater Sci Forum. 2004;461–464:839–848.
  • Powell DJ, Pilkington R, Miller DA. The precipitation characteristics of 20% Cr/25% Ni1Nb stabilised stainless steel. Acta Metall. 1988;36:713–724. doi: 10.1016/0001-6160(88)90105-8
  • Ibañez RAP, de Almeida Soares GD, de Almeida LH, et al. Effects of Si content on the microstructure of modified-HP austenitic steels. Mater Charact. 1993;30:243–249. doi: 10.1016/1044-5803(93)90071-3
  • Vitek JM, David SA. The sigma phase transformation in austenitic stainless steels. Weld J. 1986;65:106–111.
  • Suutala N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. Metall Trans A. 1982;13:2121–2130. doi: 10.1007/BF02648382
  • Stott FH, Wei FI, Enahoro CA. The influence of manganese on the high-temperature oxidation of iron-chromium alloys. Mater Corros. 1989;40:198–205. doi: 10.1002/maco.19890400403
  • Yun DW, Seo SM, Yeong HW, et al. The effects of the minor alloying elements Al, Si and Mn on the cyclic oxidation of Ni–Cr–W–Mo alloys. Corros Sci. 2014;83:176–188. doi: 10.1016/j.corsci.2014.02.015
  • Sigler DR. Adherence behavior of oxide grown in air and synthetic exhaust gas on Fe-Cr-Al alloys containing strong sulfide-forming elements: Ca, Mg, Y, Ce, La, Ti, and Zr. Oxid Met. 1993;40:555–583. doi: 10.1007/BF00666391
  • Whittle DP, Stringer J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos Trans R Soc A. 1980;295:309–329. doi: 10.1098/rsta.1980.0124
  • Stringer J. The reactive element effect in high-temperature corrosion. Mater Sci Eng A. 1989;120–121:129–137. doi: 10.1016/0921-5093(89)90730-2
  • Piekarski B. Effect of Nb and Ti additions on microstructure, and identification of precipitates in stabilized Ni-Cr cast austenitic steels. Mater Charact. 2001;47:181–186. doi: 10.1016/S1044-5803(01)00166-8
  • Barbabela GD, de Almeida LH, da Silveira TL, et al. Phase characterization in two centrifugally cast HK stainless steel tubes. Mater Charact. 1991;26:1–7. doi: 10.1016/1044-5803(91)90002-L
  • Piekarski B. The influence of Nb, Ti, and Si additions on the liquidus and solidus temperatures and primary microstructure refinement in 0.3C-30Ni-18Cr cast steel. Mater Charact. 2010;61:899–906. doi: 10.1016/j.matchar.2010.06.001
  • Blachowski A, Cieslak J, Dubriel SM, et al. Effect of titanium on the kinetics of the σ-phase formation in a coarse-grained Fe–Cr alloy. Intermetallics. 2000;8:963–966. doi: 10.1016/S0966-9795(00)00026-1
  • Blachowski A, Cieslak J, Dubriel SM, et al. Effect of titanium on the kinetics of the σ-phase formation in a small grain Fe–Cr alloy. J Alloys Compd. 2000;308:189–192. doi: 10.1016/S0925-8388(00)00835-5
  • Elmer JW, Allen SM, Eagar TW. Microstructural development during solidification of stainless steel alloys. Metall Trans A. 1989;20:2117–2131. doi: 10.1007/BF02650298
  • Bina MH. Homogenization heat-treatment to reduce the failure of heat resistant steel castings. London: INTECH Open Access Publisher; 2012
  • Chylińska R, Garbiak M, Piekarski B. Electrolytic phase extraction in stabilized austenitic cast steel. Mater Sci. 2005;11:348–351.
  • Villars P. PAULING FILE. Inorganic solid phases springer materials (online database). Springer, Heidelberg (ed.) SpringerMaterials;2016.
  • Francis JM, Jutson JA. The role of silicon in determining the oxidation resistance of an austenitic steel. Mater Sci Eng. 1969;4:84–92. doi: 10.1016/0025-5416(69)90047-0
  • Kumar A, Douglass DL. Modification of the oxidation behavior of high-purity austenitic Fe-14Cr-14Ni by the addition of silicon. Oxid Met. 1976;10:1–22. doi: 10.1007/BF00611695
  • Gleeson B, Li BT. Cyclic oxidation of chromia-scale forming alloys: lifetime prediction and accounting for the effects of major and minor alloying additions. Mater Sci Forum. 2004;461–464:427–438.
  • Gesmundo F, De Asmundis C, Battilana G, et al. High temperature oxidation of a commercial Cr-Mn austenitic steel in air. Mater Corros. 1987;38:368–375. doi: 10.1002/maco.19870380705
  • Douglass DL, Rizzo-Assuncao F. The oxidation of Fe-19.6 Cr-15.1 Mn stainless steel. Oxid Met. 1988;29:271–287. doi: 10.1007/BF00751800
  • Perez FJ, Cristobal MJ, Hierro MP. High-temperature oxidation studies of low-nickel austenitic stainless steel. Part I: isothermal oxidation. Oxid Met. 2001;55:105–118. doi: 10.1023/A:1010329310030
  • Marasco AL, Young DJ. The oxidation of iron-chromium-manganese alloys at 900 C. Oxid Met. 1991;36:157–174. doi: 10.1007/BF00938460
  • Moon DP. Role of reactive elements in alloy protection. Mater Sci Technol. 1989;5(8):754–764. doi: 10.1179/mst.1989.5.8.754
  • Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met. 1996;45:1–37. doi: 10.1007/BF01046818
  • Baltušnikas A, Levinskas R, Lukošiūtė I. Analysis of heat resistant steel state by changes of lattices parameters of carbides phases. Mater Sci. 2008;14:210–214.
  • Fang CM, Van Huis MA, Sluiter MHF, et al. Stability, structure and electronic properties of γ-Fe 23 C 6 from first-principles theory. Acta Mater. 2010;58:2968–2977. doi: 10.1016/j.actamat.2010.01.025
  • Wen-Tai H, Honeycombe RWK. Structure of centrifugally cast austenitic stainless steels: part 1 HK 40 as cast and after creep between 750 and 1000°C. Mater Sci Technol. 1985;1:385–389. doi: 10.1179/mst.1985.1.5.385
  • Inoue A, Masumoto T. Carbide reactions (M3C→ M7C3→ M23C6→ M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels. Metall Trans A. 1980;11:739–747. doi: 10.1007/BF02661203
  • Powell GLF, Carlson RA, Randle V. The morphology and microtexture of M7C3 carbides in Fe-Cr-C and Fe-Cr-C-Si alloys of near eutectic composition. J Mater Sci. 1994;29:4889–4896. doi: 10.1007/BF00356539
  • Tseng CC, Shen Y, Thompson SW, et al. Fracture and the formation of sigma phase, M23C6, and austenite from delta-ferrite in an AlSl 304L stainless steel. Metall Mater Trans A. 1994;25:1147–1158. doi: 10.1007/BF02652290
  • Hsieh C-C, Weite W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels. London: ISRN Metallurgy; 2012
  • Padilha AF, Rios PR. Decomposition of austenite in austenitic stainless steels. ISIJ Int. 2002;42(4):325–327. doi: 10.2355/isijinternational.42.325

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.