Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 8
691
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Comprehensive analysis on material and exergy balances of oxygen blast furnace

, , , , &
Pages 761-770 | Received 22 Aug 2017, Accepted 11 Nov 2017, Published online: 06 Dec 2017

References

  • IEA. Energy balance flows. Paris: IEA Publications. 2015. Available from: http://www.iea.org/Sankey/index.html#?c=World&s=Finalconsumption
  • Du T, Shi T, Liu Y, et al. Energy consumption and its influencing factors of iron and steel enterprise. J Iron Steel Res Int. 2013;20:8–13. doi: 10.1016/S1006-706X(13)60134-X
  • Orth A, Anastasijevic N, Eichberger H. Low CO2 emission technologies for iron and steelmaking as well as titania slag production. Miner Eng. 2007;20:854–861. doi: 10.1016/j.mineng.2007.02.007
  • Xu KD. Low carbon economy and iron and steel industry. Iron Steel. 2010;45:1–12. [in Chinese]
  • Nogami H, Yagi J, Kitamura S, et al. Analysis on material and energy balances of ironmaking systems on blast furnace operations with metallic charging, top gas recycling and natural gas injection. ISIJ Int. 2006;46:1759–1766. doi: 10.2355/isijinternational.46.1759
  • Ariyama T, Sato M, Nouchi T, et al. Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel works. ISIJ Int. 2016;56:1681–1696. doi: 10.2355/isijinternational.ISIJINT-2016-210
  • Hooey L, Wikström I, Sikström P. The future of blast furnace ironmaking-nordic perspective. World Steel. 2011;11:1.
  • Han YH, Xue QG, Li YZ. Prospect analysis on new ironmaking technology of oxygen blast furnace and gas-recycle. Adv Mater Res. 2011;146–147:417–423.
  • Wenzel W, Gudenau HW., et al. Hochofenproze β mit maximaler Verwendung von regeneriertem Gichtgas. Germany Patent No. 2257922.2; 1972.
  • Fink F. Suspension smelting reduction – a new method of hot iron production. Steel Times(UK). 1996;224:398–399.
  • Lu WK, Kumar RV. The feasibility of nitrogen free blast furnace operation. ISS Trans. 1984;2:25-31
  • Qin MS, Gao ZK, Wang GL. Blast furnace operation with full oxygen blast. Ironmak Steelmak. 1988;6:287–292.
  • Matsuura M, Mitsufuji H, Furukawa T, et al. Development of the oxygen blast furnace process. The Sixth IISC. 1990;2:581–588.
  • Gao ZK, Zhang JL, Kong LT. New oxygen-coal blast furnace processes. Iron Steel. 1993;9:9–13. [in Chinese]
  • Meijer K, Denys M, Lasar J, et al. ULCOS: ultra-low CO2 steelmaking. Ironmak Steelmak. 2009;36:249–251. doi: 10.1179/174328109X439298
  • Quader MA, Ahmed S, Dawal S, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program. Renew Sust Energ Rev. 2016;55:537–549. doi: 10.1016/j.rser.2015.10.101
  • Tonomura S. Outline of course 50′. Energy Procedia. 2013;37:7160–7167. doi: 10.1016/j.egypro.2013.06.653
  • Ueno H, Endo S, Tomomura S, et al. Outline of CO2 ultimate reduction in steelmaking process by innovative technology for cool earth 50 (COURSE50 project). J Jpn Inst Energ. 2015;94:1277–1283.
  • Zhang JL. The applied and fundamental research on nitrogen free blast furnace [dissertation]. Beijing: University of Science and Technology Beijing; 2001 [in Chinese].
  • Moran MJ. Availability analysis: a guide to efficient energy use. Upper Saddle River: Prentice-Hall; 1982
  • Rosen M. Second-law analysis: approaches and implications. Int J Energ Res. 1999;23:415–429. doi: 10.1002/(SICI)1099-114X(199904)23:5<415::AID-ER489>3.0.CO;2-7
  • Oliveira SD. Exergy, Exergy Costing, and Renewability Analysis of Energy Conversion Processes. London: Springer; 2013.
  • Szargut J. Exergy balance of metallurgical processes. Arch Hutnictwa. 1961;6:23–60.
  • Akiyama T, Sato H, Muramatsu A, et al. Feasibility study on blast furnace ironmaking system integrated with methanol synthesis for reduction of carbon dioxide emission and effective use of exergy. ISIJ Int. 1993;33:1136–1143. doi: 10.2355/isijinternational.33.1136
  • Petela R, Hutny W, Price JT. Energy and exergy consumption and CO2 emissions in an ironmaking process. Adv Environ Res. 2002;6:157–170. doi: 10.1016/S1093-0191(01)00118-6
  • Nogami H, Yagi J, Sampaio RS. Exergy analysis of charcoal charging operation of blast furnace. ISIJ Int. 2004;44:1646–1652. doi: 10.2355/isijinternational.44.1646
  • Ostrovski O, Zhang G. Energy and exergy analyses of direct ironsmelting processes. Energy. 2005;30:2772–2783.
  • Ziebik A, Stanek W. Influence of blast-furnace process thermal parameters on energy and exergy characteristics and exergy losses. Int J Energ Res. 2010;30:203–219. doi: 10.1002/er.1127
  • Ziebik A, Stanek W. Energy and exergy system analysis of thermal improvements of blast-furnace plants. Int J Energ Res. 2010;30:101–114. doi: 10.1002/er.1128
  • Wu FZ, Cai JJ, Zhang Q, et al. Exergy analysis of energy and materials flows in the system of ironmaking plants. Ind Heat. 2007;36:15 [in Chinese].
  • Zhang W. Exergy analysis of blast furnace process [dissertation], Shenyang: Northeastern University; 2009 [in Chinese].
  • Liu X, Chen LG, Qin XY, et al. Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows. Energy. 2015;93:10–19. doi: 10.1016/j.energy.2015.09.008
  • Zhang W, Zhang JH, Xue ZL. Exergy analyses of the oxygen blast furnace with top gas recycling process. Energy. 2017;121:135–146. doi: 10.1016/j.energy.2016.12.125
  • Qin MS, Zhang YT, Lu HS, et al. A comprehensive mathematical model for blast furnace ironmaking process. Iron Steel. 1990;10:9–14. [in Chinese]
  • Yamaoka H, Kamei Y. Theoretical study on an oxygen blast furnace using mathematical simulation model. ISIJ Int. 2007;32:701–708. doi: 10.2355/isijinternational.32.701
  • Han YH, Wang JS, Li YZ, et al. Comprehensive mathematical model of top gas recycling-oxygen blast furnaces. J Univ Sci Technol Beijing. 2011;33:1280–1286 [in Chinese].
  • Wang Z, Fan WY, Zhang GQ, et al. Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production. Appl Energ. 2016;168:1–12. doi: 10.1016/j.apenergy.2016.01.076
  • Ye DL. Practical thermodynamic data of inorganic substances. 2nd ed.Beijing: Metallurgical Industry Press; 2002 [in Chinese].
  • Barin I. Thermochemical data of pure substances. Beijing: Science Press; 2003 [in Chinese].
  • Rant Z. Exergy, a new word for technical available work. Forsch Ing Wis. 1956;22:36–37.
  • Organ AJ., et al. Stirling Cycle Engines: Inner Workings and Design. Hoboken: John Wiley & Sons; 2013.
  • Soundararajan K, Ho HK, Su B. Sankey diagram framework for energy and exergy flows. Appl Energ. 2014;136:1035–1042. doi: 10.1016/j.apenergy.2014.08.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.