Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 8
525
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of mixing and slag layer behaviours in the RH degasser with bottom gas injection by using the VOF–DPM coupled model

, &
Pages 771-776 | Received 03 Sep 2017, Accepted 23 Nov 2017, Published online: 10 Dec 2017

References

  • Yoshitomi K, Nagase M, Uddin MA, et al. Fluid mixing in ladle of RH degasser induced by down flow. ISIJ Int. 2016;56:1119–1123. doi: 10.2355/isijinternational.ISIJINT-2015-714
  • Zhu CY, Chen PJ, Li GQ, et al. A mathematical model of desulphurization kinetics for ultra-low-sulfur steels refining by powder injection during RH processing. ISIJ Int. 2016;56:1368–1377. doi: 10.2355/isijinternational.ISIJINT-2016-124
  • Chen GJ, He SP, Li YG, et al. Modeling dynamics of agglomeration, transport, and removal of Al2O3 clusters in the Rheinsahl–Heraeus reactor based on the coupled computational fluid dynamics-population balance method model. Ind Eng Chem Res. 2016;55:7030–7042. doi: 10.1021/acs.iecr.6b00586
  • Zhang J, Liu L, Zhao X, et al. Mathematical model for decarburization process in RH refining process. ISIJ Int. 2014;54:1560–1569. doi: 10.2355/isijinternational.54.1560
  • Kishan PA, Dash SK. Prediction of circulation flow rate in the RH degasser using discrete phase particle modeling. ISIJ Int. 2009;49:495–504. doi: 10.2355/isijinternational.49.495
  • Ajmani SK, Dash SK, Chandra S, et al. Mixing evaluation in the RH process using mathematical modelling. ISIJ Int. 2004;44:82–90. doi: 10.2355/isijinternational.44.82
  • Obata F, Waka R, Uehara K, et al. Circulation characteristics of RH degassing vessel water model with multi-legs. Tetsu-to-Hagané. 2000;86:225–230. doi: 10.2355/tetsutohagane1955.86.4_225
  • Demaglie GR, Tangari P, Fera S, et al. Improving manufacturing of ULC steel grades by revamping of RH degasser in steelmaking shop No. 2 of ILVA, Taranto Works. Ironmak Steelmak. 2010;37:257–261. doi: 10.1179/030192310X12628786049396
  • Jiang F, Cheng GG. Effects of gas injection with multihole orifices in upleg snorkel on bubble behaviour and decarburisation rate during RH refining. Ironmak Steelmak. 2012;39:386–390. doi: 10.1179/1743281211Y.0000000068
  • Zhu B, Liu Q, Zhao D, et al. Effect of nozzle blockage on circulation flow rate in up-snorkel during the RH degasser process. Steel Res Int. 2016;87:136–145. doi: 10.1002/srin.201400524
  • Ling H, Li F, Zhang L, et al. Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+ DPM model. Metall Mater Trans B. 2016;47:1950–1961. doi: 10.1007/s11663-016-0669-y
  • Park YG, Yi KW, Ahn SB. The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations. ISIJ Int. 2001;41:403–409. doi: 10.2355/isijinternational.41.403
  • Li BK, Tsukihashi F. Modeling of circulating flow in RH degassing vessel water model designed for two-and multi-legs operations. ISIJ Int. 2000;40:1203–1209. doi: 10.2355/isijinternational.40.1203
  • Kuwabara T, Umezawa K, Mori K, et al. Investigation of decarburization behavior in RH-reactor and its operation improvement. Trans ISIJ. 1988;28:305–314. doi: 10.2355/isijinternational1966.28.305
  • Zhang LF, Li F. Investigation on the fluid flow and mixing phenomena in a Ruhrstahl-Heraeus (RH) steel degasser using physical modeling. JOM. 2014;66:1227–1240. doi: 10.1007/s11837-014-1023-y
  • Wei JH, Hu HT. Mathematical modeling of molten steel flow in a whole RH degasser during the vacuum circulation refining process: mathematical model of the flow. Chin J Process Eng. 2006;6:62–65.
  • Wei JH, Hu HT. Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: mathematical model of the flow. Steel Res Int. 2006;77:32–36. doi: 10.1002/srin.200606127
  • Wei JH, Hu HT. Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: application of the model and results. Steel Res Int. 2006;77:91–96. doi: 10.1002/srin.200606359
  • Wei JH, Hu HT. Mathematical modelling of molten steel flow in a whole degasser during RH refining process. Ironmak Steelmak. 2005;32:427–434. doi: 10.1179/174328105X48133
  • Han J, Wang XD, Ba DC. Coordinated analysis of multiple factors of argon blowing parameters on the effect of circulation flow rate in RH vacuum refining process. Vacuum. 2014;109:68–73. doi: 10.1016/j.vacuum.2014.05.007
  • Geng DQ, Lei H, He JC. Numerical simulation of the multiphase flow in the rheinsahl–heraeus (RH) system. Metall Mater Trans B. 2010;41:234–247. doi: 10.1007/s11663-009-9300-9
  • Chen GJ, He SP, Li YG, et al. Investigation of gas and liquid multiphase flow in the Rheinsahl–Heraeus (RH) reactor by using the Euler–Euler approach. JOM. 2016;68:2138–2148. doi: 10.1007/s11837-016-1850-0
  • Kishan PA, Dash SK. Numerical and experimental study of circulation flow rate in a closed circuit due to gas jet impingement. Int J Numer Method H. 2006;16:890–909. doi: 10.1108/09615530610702050
  • Park YG, Doo WC, Yi KW, et al. Numerical calculation of circulation flow rate in the degassing Rheinstahl-Heraeus process. ISIJ Int. 2000;40:749–755. doi: 10.2355/isijinternational.40.749
  • da Silva CA, da Silva IA, de Castro Martins EM, et al. Fluid flow and mixing characteristics in RH degasser of Companhia Siderúrgica de Tubarão, and influence of bottom gas injection and nozzle blockage through physical modelling study. Ironmak Steelmak. 2004;31:37–42. doi: 10.1179/030192304225011070
  • Mazumdar D, Dhandapani P, Sarvanakumar R. Modeling and optimisation of gas stirred ladle systems. ISIJ Int. 2017;57:286–295. doi: 10.2355/isijinternational.ISIJINT-2015-701
  • Tang HY, Guo XC, Wu GH, et al. Effect of gas blown modes on mixing phenomena in a bottom stirring ladle with dual plugs. ISIJ Int. 2016;56:2161–2170. doi: 10.2355/isijinternational.ISIJINT-2016-360
  • Yu S, Zou ZS, Shao L, et al. A simple mathematical model for estimating plume hydrodynamics of metallurgical ladles. ISIJ Int. 2016;56:1303–1305. doi: 10.2355/isijinternational.ISIJINT-2016-035
  • Shui L, Cui ZX, Ma XD, et al. Understanding of bath surface wave in bottom blown copper smelting furnace. Metall Mater Trans B. 2016;47:135–144. doi: 10.1007/s11663-015-0466-z
  • Zhou X, Ersson M, Zhong L, et al. Optimization of combined blown converter process. ISIJ Int. 2014;54:2255–2262. doi: 10.2355/isijinternational.54.2255
  • Chu KY, Chen HH, Lai PH, et al. The effects of bottom blowing gas flow rate distribution during the steelmaking converter process on mixing efficiency. Metall Mater Trans B. 2016;47:948–962. doi: 10.1007/s11663-016-0593-1
  • Geng DQ, Lei H, He JC. Simulation on flow field and mixing phenomenon in RH degasser with ladle bottom blowing. Ironmak Steelmak. 2012;39:431–438. doi: 10.1179/1743281211Y.0000000090
  • Chen GJ, He SP. Mixing behavior in the RH degasser with bottom gas injection. Vacuum. 2016;130:4855.
  • Mazumdar D, Guthrie RI. Modeling energy dissipation in slag-covered steel baths in steelmaking ladles. Metall Mater Trans B. 2010;41:976–989. doi: 10.1007/s11663-010-9389-x
  • Amaro-Villeda AM, Ramirez-Argaez MA, Conejo AN. Effect of slag properties on mixing phenomena in gas-stirred ladles by physical modeling. ISIJ Int. 2014;54:1–8. doi: 10.2355/isijinternational.54.1
  • He S, Zhang G, Wang Q. Desulphurisation process in RH degasser for soft-killed ultra-low-carbon electrical steels. ISIJ Int. 2012;52:977–983. doi: 10.2355/isijinternational.52.977
  • Chen GJ, Guo YT, He SP. Effect of FeO content in slag on formation of MgO-Al2O3 inclusion for Al-killed steel. Metall Res Technol. 2016;113:204–U55. doi: 10.1051/metal/2016001
  • Chen GJ, He SP, Li YG. Investigation of the air-argon-steel-slag flow in an industrial RH reactor with VOF–DPM coupled model. Metall Mater Trans B. 2017;48:2176–2186. doi: 10.1007/s11663-017-0992-y
  • Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100:335–354. doi: 10.1016/0021-9991(92)90240-Y
  • Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989;58:63–70. doi: 10.1016/0032-5910(89)80008-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.