Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 10: STEEL WORLD ISSUE
1,035
Views
19
CrossRef citations to date
0
Altmetric
Reviews

A review of high-temperature experimental techniques used to investigate the cohesive zone of the ironmaking blast furnace

, ORCID Icon, , & ORCID Icon
Pages 953-967 | Received 24 Oct 2017, Accepted 05 Apr 2018, Published online: 26 Apr 2018

References

  • Guha M, Sinha M. Tracking softening-melting behaviour of blast furnace burden. ISIJ Int. 2015;55(9):2033–2035.
  • Iljana M, Kemppainen A, Heikkinen E-P, et al. A new sophisticated method for evaluating the reduction softening properties of iron burden materials. METEC and 2nd ESTAD Conference; Germany; 2015.
  • Nogueira FP, Fruehan JR. Blast furnace burden softening and melting phenomena: part I pellet bulk interaction observation. Metall Mater Trans B. 2004;35B:829–838.
  • Wang XL. Metallurgy-ironmaking part. 3rd ed. Beijing: Metallurgical Industry Press; 2013.
  • Tadokoro Y, Suga O. On the physical and chemical properties of various iron ores. Tetsu-to-Hagané. 1942;28:247–261.
  • Mori K, Hidaka R, Kawai Y. The behaviour of softening and melting of hematite pellet and sinter during heating in a reducing atmosphere. Trans ISIJ. 1982;22:198–206.
  • Iljana M, Kemppainen A, Paananen T, et al. Evaluating the reduction-softening behaviour of blast furnace burden with an advanced test. ISIJ Int. 2016;56(10):1705–1714.
  • Zuo GQ. Softening and melting characteristics of self-fluxed pellets with and without the addition of BOF-slag to the pellet bed. ISIJ Int. 2000;40(12):1195–1202.
  • Kanbara K, Hagiwara T, Shigemi A, et al. Dissection of blast furnaces and their inside state (report on the dissection of blast furnaces-1). Tetsu-to-Hagané. 1976;62:535–546.
  • Shimomura Y, Nishikawa K, Arino S, et al. On the inside state of the lumpy zone of blast furnace (report on the dissection of blast furnaces-2). Tetsu-to-Hagané. 1976;62:547–558.
  • Sasaki M, Ono K, Suzuki A, et al. Formation and melt-down of softening-melting zone in blast furnace (report on the dissection of blast furnaces-3). Tetsu-to-Hagané. 1976;62:559–569.
  • Nishimura T, Higuchi K, Naito M, et al. Evaluation of softening, shrinking and melting reduction behavior of raw materials for blast furnace. ISIJ Int. 2011;51(8):1316–1321.
  • Hotta H, Yamaoka Y. Softening and melting behaviour of sinter and pellets. Tetsu-to-Hagané. 1985;71:807–814.
  • Chen L, Xue QG, Guo WT, et al. Study on the interaction behaviour between lump and sinter under the condition of oxygen blast furnace. Ironmak Steelmak. 2016;43(6):458–464.
  • Wu SL, Tuo BY, Zhang LH, et al. New evaluation methods discussion of softening-melting and dropping characteristic of BF iron bearing burden. Steel Res Int. 2014;85(2):233–242.
  • Zhang HJ, She XF, Han YH, et al. Softening and melting behavior of ferrous burden under simulated oxygen blast furnace condition. J Iron Steel Res Int. 2015;22(4):297–303.
  • Sunahara K, Natsui T, Shizawa K, et al. Effect of coke reactivity on sinter softening-melting property by simultaneous evaluation method of carbonaceous and ferrous burdens in blast furnace. ISIJ Int. 2011;51(8):1322–1332.
  • Chew SJ, Zulli P, Maldonado D, et al. Melt down behaviour of a fused layer in the blast furnace cohesive zone. ISIJ Int. 2003;43(3):304–313.
  • Dong XF, Yu AB, Chew SJ, et al. Modeling of blast furnace with layered cohesive zone. Metall Mater Trans B. 2010;41(2):330–349.
  • Kurosawa H, Matsuhashi S, Natsui S, et al. DEM-CFD model considering softening behavior of ore particles in cohesive zone and gas flow analysis at low coke rate in blast furnace. ISIJ Int. 2012;52(6):1010–1017.
  • Liu XL, Wu SL, Huang W, et al. Influence of high temperature interaction between sinter and lump ores on the formation behavior of primary-slags in blast furnace. ISIJ Int. 2014;54(9):2089–2096.
  • Higuchi K, Naito M, Nakano M, et al. Optimization of chemical composition and microstructure of iron ore sinter for low-temperature drip of molten iron with high permeability. ISIJ Int. 2004;44(12):2057–2066.
  • Ueda S, Miki T, Murakami T, et al. Agenda for low reducing agent operation of blast furnace-reduction and melting phenomena of iron ore. Tetsu-to-Hagané. 2013;99(1):1–11.
  • Kemppainen A, Ohno K-i, Iljana M, et al. Softening behaviors of acid and olivine fluxed iron ore pellets in the cohesive zone of a blast furnace. ISIJ Int. 2015;55(10):2039–2046.
  • Ranade MG. Testing of softening and melting characteristics of iron-bearing materials: a critical review of procedures and applications. Proceedings of the Ironmaking Conference; Atlanta; vol. 42; 1983. p. 129–144.
  • Loo CE, Bristow NJ. Properties of iron bearing materials under simulated blast furnace indirect reduction conditions part 1 review and experimental procedure. Ironmak Steelmak. 1998;25(3):222–232.
  • Naito M, Takeda K, Matsui Y. Ironmaking technology for the last 100 years: deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process. ISIJ Int. 2015;55(1):7–35.
  • Zhou DD, Cheng SS, Wang YS, et al. The production of large blast furnaces during 2016 and future development of ironmaking in China. Ironmak Steelmak. 2017;40(10):714–720.
  • Zhou DD, Cheng SS, Wang YS, et al. The production and development of large blast furnaces in China during 2015. Ironmak Steelmak. 2017;44(5):351–358.
  • Zhang SR, Yu ZJ. Development of ironmaking technology in the past 60 years. Iron and Steel. 2014;49(7):8–14.
  • Geerdes M, Toxopeus H. Vliet Cvd. Modern blast furnace ironmaking – an introduction. Amsterdam: IOS Press BV; 2009.
  • Khaki JV, Kashiwaya Y, Ishii K. High temperature behavior of self fluxed pellets during heating up reduction. Ironmak Steekmak. 1994;21(1):56–63.
  • Borinder T, Bi XG. Softening-melting properties of pellets under simulated blast furnace conditions. Scand J Metall. 1989;18(9):280–287.
  • Borinder T. High temperature behavior of some blast furnace pellets part I. Scand J Metall. 1987;16(3):122–128.
  • Shigaki I, Shirouchi S, Tokutake K, et al. Study and improvement of reduction retardation and melt-down properties of pellets. ISIJ Int. 1990;30(3):199–207.
  • Kortmann HA, Lüngen HB, Ritz VJ. Quality requirement for burden materials and testing methods used in Germany. Ironmaking Conference Proceedings; Toronto; vol. 51; 1992. p. 195–203.
  • Mu JY. Softening and melting properties of high basicity sinter. Sintering Pelletizing. 1986;6:17–23.
  • Mishra UN, Pal S, Verma RK, et al. Softening and melting characteristics of blast furnace burden materials. SEAISI Q. 1990;19(April):11–19.
  • Clixby G. Simulated blast-furnace reduction of acid pellets in temperature range 950-1350°C. Ironmak Steekmak. 1986;13(4):169–175.
  • Dawson PR. Determination of the high temperature properties of blast furnace burden materials. SEAISI Q. 1987;16(January):23–42.
  • Iwanaga Y. Quantitative determination of softening properties of sinter by measuring apparent softening viscosity. Ironmak Steekmak. 1989;16(6):392–398.
  • Shimoda T, Kurita K, Iwanaga Y. Evaluation of softening properties of sinter and gas flow in the blast furnace. Tetsu-to-Hagané. 1984;70(7):665–671.
  • Hotta H, Yamaoka Y. Softening and melting behavior of sinter and pellets. Trans ISIJ. 1985;25:294–301.
  • Nogueira FP, Fruehan JR. Blast furnace burden softening and melting phenomena part II. Evolution of the structure of the pellets. Metall Mater Trans B. 2005;36B:583–590.
  • Fullerton GG. The softening/melting test laboratory procedures. Internal Report, The Broken Hill Proprietary Company Limited; 1998.
  • Chew S, Zulli P, Nightingale R, et al. Application of softening melting test data in blast furnace. SCANMET II; Luleå; 2004.
  • Matsumura M, Hoshi M, Kawaguchi T. Improvement of sinter softening property and reducibility by controlling chemical compositions. ISIJ Int. 2005;45(4):594–602.
  • Ritz VJ, Kortmann HA. Reduction, softening and melting properties of pellets, sinters, lumpy ore and mixed blast furnace burden. Ironmaking Conference Proceedings; Toronto; vol. 57; 1998. p. 1635–1654.
  • Hsieh LH, Liu KC. Influence of material composition on the softening and melting properties of blast furnace burden materials. Ironmaking Conference Proceedings; Toronto; vol. 57; 1998. p. 1623–1632.
  • Sterneland J, Lahiri AK. Contraction and meltdown behaviour of olivine iron ore pellets under simulated blast furnace conditions. Ironmak Steelmak. 1999;26(5):339–348.
  • Gustavsson J, Hahlin P, Jönsson P. Meltdown behaviour of pellets reduced in a laboratory reduction furnace. Scand J Metall. 2003;32(2):100–111.
  • Sterneland J, Andersson MAT, Jönsson PG. Comparison of iron ore reduction in experimental blast furnace and laboratory scale simulation of blast furnace process. Ironmak Steelmak. 2003;30(4):313–327.
  • Hosotani Y, Yamaguchi K, Orimoto T, et al. Development of evaluation method for softening-melting properties of sinter. Tetsu-to-Hagané. 1997;83(2):97–102.
  • Matsui T, Ishiwata N, Hara Y, et al. Influence of gangue composition on melting behavior of coal-reduced iron mixture. ISIJ Int. 2004;44(12):2105–2111.
  • Chen L, Xue QG, Guo WT, et al. Interaction effect between lump and sinter under condition of oxygen blast furnace. Iron and Steel. 2016;51(2):15–21.
  • Guo WT, Xue QG, Liu YL, et al. Microstructure evolution during softening and melting process in different reduction degrees. Ironmak Steelmak. 2016;43(1):22–30.
  • Kaushik P. Mixed burden softening and melting phenomena. Pittsburgh: Carnegie Mellon University; 2006.
  • Kaushik P, Fruehan RJ. Mixed burden softening and melting phenomena in blast furnace operation. Cleveland: AISTech; 2006.
  • Kaushik P, Fruehan RJ. Mixed burden softening and melting phenomena in blast furnace operation Part 1 – X-ray observation of ferrous burden. Ironmak Steelmak. 2006;33(6):507–519.
  • Kaushik P, Fruehan RJ. Mixed burden softening and melting phenomena in blast furnace operation Part 3 – mechanism of burden interaction and melt exudation phenomenon. Ironmak Steelmak. 2007;34(1):10–22.
  • Chen M, Zhang WD, Zhao ZX, et al. High temperature softening behaviours of iron blast furnace feeds and their correlations to the microstructures. 6th International Symposium on High-Temperature Metallurgical Processing; Orlando; 2015. p. 67–74.
  • An XW, Wang JS, Lan RZ, et al. Softening and melting behavior of mixed burden for oxygen blast furnace. J Iron Steel Res Int. 2013;20(5):11–16.
  • Nandy B, Chandra S, Bhattacharjee D, et al. Assessment of blast furnace behaviour through softening–melting test. Ironmak Steelmak. 2006;33(2):111–119.
  • Dwarapudi S, Ghosh TK, Shankar A, et al. Effect of pyroxenite flux on the quality and microstructure of hematite pellets. Int J Miner Process. 2010;96(1–4):45–53.
  • Tuo BY, Wang JL, Yao YL, et al. Influence of coke reactivity improved on high temperature properties of iron-bearing burden. ISIJ Int. 2015;55(9):1859–1865.
  • Wu SL, Huang W, Kou MY, et al. Influence of Al2O3 content on liquid phase proportion and fluidity of primary slag and final slag in blast furnace. Steel Res Int. 2015;86(5):550–556.
  • Wu SL, Su B, Liu XL, et al. Optimisation of the blast furnace burden based on its primary slag formation behaviour. Ironmak Steelmak. 2018;45(1):50–57.
  • Yang GQ, Zhang JL, Shao JG, et al. Comparative study on softening-melting properties between V/Ti-bearing magnetite pellet and common pellet. Iron Steel Vanadium Titanium. 2012;33(5):30–34.
  • Zhang JL, Zhang YP, Li KJ, et al. Microstructure and phase transformation of a sinter bearing low Ti during reduction. Metall Mater Trans B. 2016;47(5):3046–3055.
  • She XF, Wang JS, Liu JZ, et al. Increasing the mixing rate of metalized pellets in blast furnace based on the high-temperature interactivity of iron bearing materials. ISIJ Int. 2014;54(12):2728–2736.
  • Loo CE, Matthews L, O'Dea D. Lump ore and sinter behaviour during softening and melting. ISIJ Int. 2011;51(6):930–938.
  • Honeyands T, Evans G, Liu XL, et al. Softening and melting characteristics of lump, pellets, sinter, and mixed ferrous burden. The 6th Australia–China–Japan Joint Symposium on Iron and Steelmaking; Melbourne; 2016.
  • Takeuchi N, Iwami Y, Higuchi T, et al. Evaluation of sinter quality for improvement in gas permeability of blast furnace. ISIJ Int. 2014;54(4):791–800.
  • Kamijo C, Hoshi M, Kawaguchi T, et al. Influence of ore and coal brand on the reduction of the carbon composite iron ore sheet. Tetsu-to-Hagané. 2006;92(12):825–832.
  • Zhao GG, Fan XH, Chen XL, et al. Metallurgical properties of ferrous burdens in blast furnace. J Cent South Univ (Sci Technol). 2010;41(6):2053–2059.
  • Iljana M, Kemppainen A, Paananen T, et al. Effect of adding limestone on the metallurgical properties of iron ore pellets. Int J Miner Process. 2015;141:34–43.
  • Sunahara K, Ujisawa Y, Murakami T, et al. Effect of placement and reactivity of iron-ore and carbon on iron-ore softening-melting properties in blast furnace cohesive zone. Tetsu-to-Hagané. 2016;102(9):475–484.
  • Shen FM, Jiang X, Wu GS, et al. Proper MgO addition in blast furnace operation. ISIJ Int. 2006;46(1):65–69.
  • Jiang X, Wu GS, Li GS, et al. Study on improving the softening-melting properties of MgO bearing iron ores. J Northeaste Univ (Nat Sci). 2007;28(3):365–368.
  • Gao QJ, Wei G, Mu L, et al. Experimental study of softening and melting properties on Indonesia vanadium–titanium sinters. Adv Mater Res. 2011;284–286:1039–1043.
  • Liu JX, Cheng GJ, Liu ZG, et al. Softening and melting properties of different burden structures containing high chromic vanadium titano-magnetite. Int J Miner Process. 2015;142:113–118.
  • Liu ZG, Chu MS, Wang HT, et al. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite. Int J Min Met Mater. 2016;23(1):25–32.
  • Kaushik P, Fruehan RJ. Mixed burden softening and melting phenomena in blast furnace operation part 2 – mechanism of softening and melting and impact on cohesive zone. Ironmak Steelmak. 2006;33(6):520–528.
  • Nishimura T, Higuchi K, Ohno K-i, et al. Effect of ore layer thickness on reduction degree and gas permeability in high temperature properties test. Tetsu-to-Hagané. 2016;102(2):61–67.
  • Watakabe S, Takeda K, Nishimura H, et al. Development of high ratio coke mixed charging technique to the blast furnace. ISIJ Int. 2006;46(4):513–522.
  • Branescu E, Blajan AO, Constantin N. Experimental research on the characteristics of softening and melting of iron ores as significant factor of influence on gas permeability of blast furnace charge. IOP Publishing; vol. 85; 2015. p. 1–8.
  • Wang HT, Li GH, Fan XH, et al. Comparative study on metallurgical properties of blast furnace burdens. Iron and Steel. 2006;41(1):23–27.
  • Lu LM, Holmes RJ, Manuel JR, et al. Lump ore characteristics and their impact on blast furnace operation. Iron Ore Conference; Perth; 2009.
  • Wang Z, Zhang JL, Zuo HB, et al. Influence of Al2O3 content on softening-melting property of high basicity sinter. Iron and Steel. 2015;50(7):20–25.
  • Tayama A, Shimomura Y, Kushima K, et al. Production and use of high quality pellets. Ironmaking Conference Proceedings; Washington; vol. 139; 1980. p. 390–398.
  • Hayashi S, Okumura K, Suzuki H, et al. Comprehensive reation behaviour of a coke mixed bed under blast furnace simulated conditions with a constant load. 6th ICSTI; Rio; 2012.
  • Ichikawa K, Kashihara Y, Oyama N, et al. Evaluating effect of coke layer thickness on permeability by pressure drop estimation model. ISIJ Int. 2017;57(2):254–261.
  • Ichikawa K, Kashihara Y, Oyama N, et al. Evaluating the effect of coke layer thickness on permeability by pressure drop estimating model. Tetsu-to-Hagané. 2016;102(1):1–8.
  • Ichikawa K, Ishii J, Watakabe S, et al. Estimation of minimum coke layer thickness by developing pressure drop estimation model about cohesive zone in blast furnace. METEC and 2nd ESTAD; Düsseldorf; 2015.
  • Wu SL, Han HL, Xu HF, et al. Increasing lump ores proportion in blast furnace based on the high-temperature interactivity of iron bearing materials. ISIJ Int. 2010;50(5):686–694.
  • Ishii J, Murai R, Sumi I, et al. Gas permeability in cohesive zone in the ironmaking blast furnace. ISIJ Int. 2017;57(9):1531–1536.
  • Chaigneau R, Husslage W, Blast furnace best burden quality a first assessment based on simulation tests. 5th European Coke and Ironmaking Congress; Stockholm; 2005.
  • Chaigneau R, Bakker T, Steeghs A, et al. Quality assessment of ferrous burdens: Utopian dream? Ironmaking Conference Proceedings; Baltimore; vol. 84; 2001. p. 689–703.
  • Chaigneau R, Sportel H, Trouw J, et al. Blast furnace burden quality: laboratory simulation. Ironmak Steelmak. 1997;24(6):461–467.
  • Wu SL, Liu XL, Wu JL. Reduction disintegration behavior of lump ore in COREX shaft furnace. ISIJ Int. 2015;55(8):1608–1616.
  • Yamaoka Y, Hotta H, Kajikawa S. Testing method of high temperature properties of blast furnace burdens. Tetsu-to-Hagané. 1980;66(13):1850–1859.
  • Mitra S, Liu X, Honeyands T, et al. Analysis of pressure drop in a softening and melting test for lump iron ore. 3rd International Conference on Science and Technology of Ironmaking and Steelmaking; Kanpur; 2017.
  • Naito M, Okamoto A, Yamaguchi K, et al. Improvement of blast furnace reaction efficiency by use of high reactivity coke. Tetsu-to-Hagané. 2001;87(5):357–364.
  • Tsalapatis J, Middleton M, Keil R, et al. The use and optimisation of ferrous feed at the Whyalla blast furnace. Iron Ore Conference; Perth; 2015.
  • Qi ZN, Wu SL, Kou MY, et al. Studying on softening and melting behavior of lump ore in blast furnace. 7th International Symposium on High-Temperature Metallurgical Processing; San Diego; 2016.
  • Cham ST, Khanna R, Sahajwalla V, et al. Influence of mineral matter on carbon dissolution from metallurgical coke into molten iron. ISIJ Int. 2009;49(12):1860–1867.
  • Mehta AS, Sahajwalla V. Coal char/slag interactions during pulverised coal injection in a blast furnace reaction kinetics and wetting investigations. ISIJ Int. 2003;43(10):1512–1518.
  • Li GH, Luo J, Peng ZW, et al. Effect of quaternary basicity on melting behavior and ferronickel particles growth of saprolitic laterite ores in Krupp–Renn process. ISIJ Int. 2015;55(9):1828–1833.
  • Ueda S, Kon T, Miki T, et al. Effects of Al2O3 and MgO on softening, melting, and permeation properties of CaO–FeO–SiO2 on a coke bed. Metall Mater Trans B. 2016;47(4):2371–2377.
  • Ueda S, Kon T, Miki T, et al. Softening, melting, and permeation phenomena of CaO–FeO–SiO2 oxide on a coke bed. ISIJ Int. 2015;55(10):2098–2104.
  • Nakashima K, Saito N, Shinozaki S, et al. Wetting and penetration behavior of calcium ferrite melts to sintered hematite. ISIJ Int. 2004;44(12):2052–2056.
  • Wang LX, Wu SL, Lu YN, et al. The softening and melting behaviour of single and mixed iron ore burdens. Iron Ore Conference; Perth; 2017.
  • Sugiyama T, Sato H, Nakamura M, et al. Mechanism of flow resistance of gas through the fused packed bed. Tetsu-to-Hagané. 1980;66:1908–1917.
  • Yang WJ, Zhou ZY, Pinson D, et al. A new approach for studying softening and melting behavior of particles in a blast furnace cohesive zone. Metall Mater Trans B. 2014;46(2):977–992.
  • Yang WJ, Zhou ZY, Yu AB, et al. Particle scale simulation of softening–melting behaviour of multiple layers of particles in a blast furnace cohesive zone. Powder Technol. 2015;279:134–145.
  • Loo CE. Important acid ferrous burden properties in the cohesive zone of a blast furnace. Miner Process Extr M. 2016;125(3):187–196.
  • Bale CW, Bélisle E, Chartrand P, et al. Factsage thermochemical software and databases, 2010–2016. Calphad. 2016;54:35–53.
  • Bale CW, Bélisle E, Chartrand P, et al. Factsage thermochemical software and databases – recent developments. Calphad. 2009;33(2):295–311.
  • Davies R, Dinsdale A, Gisby J, et al. MTDATA – thermodynamic and phase equilibrium software from the national physical laboratory. Calphad. 2002;26(2):229–271.
  • Ichikawa K, Ishii J, Watakabe S, et al. Quantitative estimation of gas permeability of softening sinter layer with liquid phase. ISIJ Int. 2015;55(3):544–551.
  • Matsuhashi S, Kurosawa H, Natsui S, et al. Evaluation of coke mixed charging based on packed bed structure and gas permeability changes in blast furnace by DEM-CFD model. ISIJ Int. 2012;52(11):1990–1999.
  • Dong Z, Xue Q, Zuo H, et al. Gas-solid flow and shaft injected gas penetration in an oxygen blast furnace analyzed using a three-dimensional DEM-CFD coupling mathematical model. ISIJ Int. 2016;56(9):1588–1597.
  • Kon T, Natsui S, Matsuhashi S, et al. Influence of cohesive zone thickness on gas flow in blast furnace analyzed by DEM-CFD model considering low coke operation. Steel Res Int. 2013;84(11):1146–1156.
  • Ueda S, Kon T, Kurosawa H, et al. Influence of shape of cohesive zone on gas flow and permeability in the blast furnace analyzed by DEM-CFD model. ISIJ Int. 2015;55(6):1232–1236.
  • Kim SY, Sasaki Y. Numerical study using discrete element method about coke particle behavior in cohesive zone. ISIJ Int. 2013;53(12):2028–2037.
  • Fan ZY, Natsui S, Ueda S, et al. Transient behavior of burden descending and influence of cohesive zone shape on solid flow and stress distribution in blast furnace by discrete element method. ISIJ Int. 2010;50(7):946–953.
  • Shen YS, Guo BY, Chew S, et al. Three-dimensional modeling of flow and thermochemical behavior in a blast furnace. Metall Mater Trans B. 2015;46(1):432–448.
  • Wang GX, Liteter JD, Yu AB. Simulation of gas–liquid flow in dripping zone of blast furnace involving impermeable fused layers. ISIJ Int. 2000;40(7):627–636.
  • Dong X, Yu A, Yagi J, et al. Modelling of multiphase flow in a blast furnace: recent developments and future work. ISIJ Int. 2007;47(11):1553–1570.
  • Ueda S, Natsui S, Nogami H, et al. Recent progress and future perspective on mathematical modeling of blast furnace. ISIJ Int. 2010;50(7):914–923.
  • Fu D, Tang G, Zhao Y, et al. Integration of Tuyere, raceway and shaft models for predicting blast furnace process. JOM; 2017. Published online https://doi.org/10.1007/s11837-017-2614-1
  • Maldonado D. Heat and mass transfer in the blast furnace cohesive zone. The University of New South Wales; 2003.
  • Katherine K. Literature review: softening and melting of iron ore in blast furnace. Internal Report, BHP Billiton Newcastle Technology Centre; 2003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.