Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 46, 2019 - Issue 9: Continuous Casting
592
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation on solidification of GCr15 bearing steel by the simulated continuous casting

, , , , &
Pages 801-808 | Received 01 Mar 2018, Accepted 04 Jul 2018, Published online: 19 Jul 2018

References

  • Bhadeshia HKDH. Steels for bearings. Prog Mater Sic. 2012;57(2):268–435. doi: 10.1016/j.pmatsci.2011.06.002
  • Yang L, Cheng G-G, Li S-J, et al. A coupled model of TiN inclusion growth in GCr15SiMn during solidification in the electroslag remelting process. Int J Miner Metall Mater. 2015;22(12):1266–1272. doi: 10.1007/s12613-015-1194-8
  • Fu J-W. Microstructure and corrosion behavior of hot-rolled GCr15 bearing steel. Appl Phys A. 2016;122(2):416–421. doi: 10.1007/s00339-016-9975-0
  • Flemings MC. Our understanding of macrosegregation: past and present. ISIJ Int. 2000;40(9):833–841. doi: 10.2355/isijinternational.40.833
  • Scholes A, et al. Segregation in continuous casting. Ironmak Steelmak. 2005;32(2):101–108. doi: 10.1179/irs.2005.32.2.101
  • Choudhary SK, Ganguly S. Morphology and segregation in continuously cast high carbon steel billets. ISIJ Int. 2007;47(12):1759–1766. doi: 10.2355/isijinternational.47.1759
  • Sun H, Li L, Cheng X, et al. Reduction in macrosegregation on 380 mm×490 mm bloom caster equipped combination M + F-EMS by optimising casting speed. Ironmak Steelmak. 2015;42(6):439–449. doi: 10.1179/1743281214Y.0000000247
  • Guo J, Qian D-S, Deng J-D. Grain refinement limit during hot radial ring rolling of as-cast GCr15 steel. J Mater Process Technol. 2016;231:151–161. doi: 10.1016/j.jmatprotec.2015.12.018
  • Kyung SO, Young WC. Macrosegregation behavior in continuously cast high carbon steel blooms and billets at the final stage of solidification in combination stirring. ISIJ Int. 1995;35(7):866–875. doi: 10.2355/isijinternational.35.866
  • Choudhary SK, Ganguly S, Sengupta A, et al. Solidification morphology and segregation in continuously cast steel slab. J Mater Process Technol. 2017;243:312–321. doi: 10.1016/j.jmatprotec.2016.12.030
  • Pikkarainen T, Vuorenmaa V, Rentola I, et al. Effect of superheat on macrostructure and macrosegregation in continuous cast low-alloy steel slabs. 4th International Conference on Advances in Solidification Processes. 8–11th July 2014, Beaumont Estates, Old Windsor, UK. 2016; IOP Publishing (IOP Conf. Series: Materials Science and Engineering 117 (2016) 012064).
  • Du G, Li J, Wang Z-B. Control of carbide precipitation during electroslag remelting continuous rapid solidification of GCr15 steel. Metall Mater Trans B. 2017;48(6):1–18. doi: 10.1007/s11663-017-1089-3
  • Sun H-B, Zhang J-Q. Study on the macrosegregation behavior for the bloom continuous casting: model development and validation. Metall Mater Trans B. 2014;45(3):1133–1149. doi: 10.1007/s11663-013-9986-6
  • Mori H, Tanaka M, Sato N, et al. Macrostructure of and segregation in continuously cast steel billets. Trans ISIJ. 1972;12:102–111.
  • Moore JJ, Hamilton JC. Axial segregation in continuously cast steel billets. Metall Mater Technol. 1980;12:569–573.
  • Moore JJ, Shah NA. Mechanisms of formation of A- and V-segregation incast steel. Int Me Rev. 1983;28(6):338–356.
  • Ludlow V, Normanton A, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting. Ironmak Steelmak. 2005;32(1):68–74. doi: 10.1179/174328105X23978
  • Zhu H-C, Li H-B, Zhang S-C, et al. Numerical simulation of Mo macrosegregation during ingot casting of high-Mo austenitic stainless steel. Ironmak Steelmak. 2015;42(10):748–755. doi: 10.1080/03019233.2015.1120003
  • Zeng L, Xu M-Q, Ma X-R, et al. Grain refinement and delta ferrite reduction of high Cr steel ingots by thermal control. ISIJ Int. 2014;54(10):2302–2308. doi: 10.2355/isijinternational.54.2302
  • Chaube S, Tennyson G, Singh A. Modelling of columnar-to-equiaxed transition and inclusion distribution in continuously cast steel billets. Trans Indian Inst Met. 2015;68(6):1207–1213. doi: 10.1007/s12666-015-0705-7
  • Zhou X-F, Fang F, Jiang J-Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater Sci Technol Lond. 2014;30(1):117–122. doi: 10.1179/1743284713Y.0000000338
  • Ji Y-L, Zhang W, Chen X-Y, et al. Increasing solidification rate of M2 high-speed steel ingot by fusible metal mold. Acta Metall Sin (Engl Lett). 2016;29(4):382–387. doi: 10.1007/s40195-016-0398-x
  • Bai L, Wang B, Zhong H-G, et al. Experimental and numerical simulations of the solidification process in continuous casting of slab. Metals-Basel. 2016;6(3):53–64. doi: 10.3390/met6030053
  • Li X-B, Ding Y, Tang Z-Y. Study of thermo-physical properties GCr15 bearing steel in continuous casting. J Mater Metall. 2010;9(4):241–244.
  • Alizadeh M, Jahromi AJ, Abouali O. New analytical model for local heat flux density in the mold in continuous casting of steel. Comput Mater Sci. 2008;44(2):807–812. doi: 10.1016/j.commatsci.2008.05.034
  • Santos CA, Quaresma JMV, Garcia A. Determination of transient interfacial heat transfer coefficients in chill mold casting. J Alloys Comp. 2001;319:174–186. doi: 10.1016/S0925-8388(01)00904-5
  • Gafur MA, Nasrul-Haque M, Narayan-Prabhu K. Effect of chill thickness and Su-perheat on casting/chill interfacial heat transfer during solidification of commercially pure aluminum. J Mater Proces Technol. 2003;133:257–265. doi: 10.1016/S0924-0136(02)00459-4
  • Wang G-X, Matthys EF. Experimental determination of the interfacial heat transfer during cooling and solidification of molten metal droplets impacting on a metallic substrate: effect of roughness and superheat. Int J Heat Mass Transfer. 2002;45:4967–4981. doi: 10.1016/S0017-9310(02)00199-0
  • Taha MA, El-Mahallawy NA, El-Mestekawi MT, et al. Estimation of air gap and heat transfer coefficient at different faces of Al and Al-Si castings solidifying in permanent mould. Mater Sci Technol. 2001;17(9):1093–1101. doi: 10.1179/026708301101511004
  • Akar N, Şahin HM, Yalçin N, et al. Experimental study on the effect of liquid metal superheat and casting height on interfacial heat transfer coefficient. Exp Heat Transfer. 2008;21(1):83–98. doi: 10.1080/08916150701647785
  • Pryds NH, Huang X. The effect of cooling rate on the microstructures formed during solidification of ferritic steel. Metall Mater Trans A. 2000;31:3155–3166. doi: 10.1007/s11661-000-0095-1
  • Jiang D, Zhu M. Flow and solidification in billet continuous casting machine with dual electromagnetic stirrings of mold and the final solidification. Steel Res. Int. 2015;86(9):993–1003. doi: 10.1002/srin.201400281
  • Karlinski De Barcellos V, Lopes Da Silva Gschwenter V, Kytönen H, et al. Modelling of heat transfer, dendrite microstructure and grain size in continuous casting of steels. Steel Res Int. 2010;81(6):461–471. doi: 10.1002/srin.201000026
  • Guo W, Zhang L, Zhu M. Modeling on dendrite growth of medium carbon steel during continuous casting. Steel Res Int. 2010;81(4):265–277. doi: 10.1002/srin.200900117
  • Kim HS, Kobayashi Y, Tsukamoto S, et al. Effect of cooling rate on microstructure evolution of rapidly cooled high-impurity steels. Mat Sci Eng A Struct. 2005;403(1-2):311–317. doi: 10.1016/j.msea.2005.05.049
  • Jin H-T, Sun H-Y, Zhang R-J. Basic rule on carbon macrosegregation of billets in continuous casting of GCr15 bearing steel. China Metallurgy. 2008;18(7):19–24.
  • Xu W-Y, Cao Z-G, Yan HC. Macrosegregation in cast bloom of gear steel and its format ion mechanism. Steelmaking. 2011;27(5):63–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.