Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 47, 2020 - Issue 4
305
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of axial static magnetic field on columnar to equiaxed transition in directionally solidified low carbon steel

, , , , , ORCID Icon & show all
Pages 398-404 | Received 20 Aug 2018, Accepted 26 Sep 2018, Published online: 01 Nov 2018

References

  • Bhadeshia HKDH. Steels for bearings. Prog Mater Sci. 2012;57(2):268–435.
  • Qiu H, Wang L, Hanamura T, et al. Physical interpretation of grain refinement-induced variation in fracture mode in ferritic steel. ISIJ Int. 2013;53(2):382–384.
  • Dong Z, Jiang B, Mei Z, et al. Effect of carbide distribution on the grain refinement in the steel for large-size bearing ring. Steel Res Int. 2016;87(6):745–751.
  • Hunt JD. Steady state columnar and equiaxed growth of dendrites and eutectic. Mater Sci Eng. 1984;65(1):75–83.
  • Kabbaj H, Roboam X, Lefevre Y, et al. Skin effect characterization in a squirrel cage induction machine. IEEE Int Symp. 1997;2:532–536.
  • Harada H, Toh T, Ishii T, et al. Effect of magnetic field conditions on the electromagnetic braking efficiency. ISIJ Int. 2001;41(10):1236–1244.
  • Lehmann P, Moreau R, Camel D, et al. Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater. 1998;46(11):4067–4079.
  • Moreau R, Laskar O, Tanaka M, et al. Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime. Mater Sci Eng A. 1993;173(1):93–100.
  • Zheng L, Zhang H, Larson JDJ, et al. A model for solidification under the influence of thermoelectric and magnetohydrodynamic effects: application to Peltier demarcation during directional solidification with different gravitational conditions. J Heat Trans. 1998;120(2):430–440.
  • Yesilyurt S, Vujisic L, Motakef S, et al. A numerical investigation of the effect of thermoelectromagnetic convection (TEMC) on the Bridgman growth of Ge1−xSix. J Cryst Growth. 1999;207(4):278–291.
  • Khine YY, Walker JS. Thermoelectric magnetohydrodynamic effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field. J Cryst Growth. 1998;183(1):150–158.
  • Li X, Fautrelle Y, Ren Z. Influence of a high magnetic field on columnar dendrite growth during directional solidification. Acta Mater. 2007;55(16):5333–5347.
  • Li X, Gagnoud A, Ren Z, et al. Investigation of thermoelectric magnetic convection and its effect on solidification structure during directional solidification under a low axial magnetic field. Acta Mater. 2009;57(7):2180–2197.
  • Shercliff JA. Thermoelectric magnetohydrodynamics. J Fluid Mech. 1979;91(2):631–651.
  • Lehmann P, Moreau R, Camel D, et al. A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification comparison with experimental results. J Cryst Growth. 1998;183(4):690–704.
  • Dold P, Szofran FR, Benz KW. Thermoelectromagnetic convection in vertical Bridgman grown germanium–silicon. J Cryst Growth. 2006;291(1):1–7.
  • Li X, Gagnoud A, Fautrelle Y, et al. Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater. 2012;60(8):3321–3332.
  • Li X, Fautrelle Y, Zaidat K, et al. Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field. J Cryst Growth. 2010;312(2):267–272.
  • Li X, Ren Z, Shen Y, et al. Effect of thermoelectric magnetic force on the array of dendrites during directional solidification of Al–Cu alloys in a high magnetic field. Philos Mag Lett. 2012;92(12):675–682.
  • Yu J, Du D, Ren Z, et al. Influence of an axial magnetic field on microstructures and alignment in directionally solidified Ni-based superalloy. ISIJ Int. 2017;57(2):337–342.
  • Lielausis O, Klavins J, Mikelsons A, et al. Potentials, currents and thermoelectric effects at continuous casting. Magnetohydrodynamics. 1996;32(2):178–182.
  • Hou Y, Zhang Z, Xuan W, et al. Grain refinement during directionally solidifying GCr18Mo steel at low pulling speeds under an axial static magnetic field. Acta Metall Sin (Engl Lett. 2018;31(7):681–691.
  • Kurz W, Fisher DJ. Fundamentals of solidification. Aedermannsdorf, Switzerland: Trans Tech Publications Ltd; 1992.
  • Ananiev S, Nikrityuk P, Eckert K. Dendrite fragmentation by catastrophic elastic remelting. Acta Mater. 2009;57(3):657–665.
  • Wang W, Zhu M, Cai Z, et al. Micro-segregation behavior of solute elements in the mushy zone of continuous casting wide-thick slab. Steel Res Int. 2012;83(12):1152–1162.
  • Baltaretu F, Wang J, Letout S, et al. Thermoelectric effects on electrically conducting particles in liquid metal. Magnetohydrodynamics. 2015;51(1):45–56.
  • Wang J, Fautrelle Y, Nguyen-Thi H, et al. Thermoelectric magnetohydrodynamic flows and their induced change of solid–liquid interface shape in static magnetic field-assisted directional solidification. Metall Mater Trans A. 2015;47(3):1–11.
  • Enderby JE, Dupree BC. The thermoelectric power of liquid Fe, Co and Ni. Philos Mag. 1977;35(3):791–793.
  • Taniguchi S, Brimacombe JK. Application of pinch force to the separation of inclusion particles from liquid steel. ISIJ Int. 1994;34(9):722–731.
  • Aboutalebi MR, Hasan M, Guthrie RIL. Coupled turbulent flow, heat, and solute transport in continuous casting processes. Metal Mater Trans B. 1995;26(4):731–744.
  • Hellawell A, Liu S, Lu S. Dendrite fragmentation and the effects of fluid flow in castings. JOM. 1997;49(3):18–20.
  • Ruvalcaba D, Mathiesen RH, Eskin DG, et al. In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy. Acta Mater. 2007;55(13):4287–4292.
  • Cai B, Wang J, Kao A, et al. 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater. 2016;117:160–169.
  • Zimmermann G, Pickmann C, Hamacher M, et al. Fragmentation-driven grain refinement in directional solidification of AlCu10wt-% alloy at low pulling speeds. Acta Mater. 2017;126:236–250.
  • Wang J, Lin X, Fautrelle Y, et al. Motion of solid grains during magnetic field-assisted directional solidification. Metall Mater Trans B. 2018;49(3):861–865.
  • Fautrelle Y, Wang J, Salloum-Abou-Jaoude G, et al. Thermo-electric-magnetic hydrodynamics in solidification: in situ observations and theory. JOM. 2018;70(5):764–771.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.